Experimental study on air-water interface properties in self-aerated flows

  • Wang-ru Wei (卫望汝)
  • Wei-lin Xu (许唯临)
  • Jun Deng (邓军)Email author
  • Zhong Tian (田忠)
  • Fa-xing Zhang (张法星)


Microscopic air-water structures and interface area properties in self-aerated flows are the important interests in high-speed self-aerated flows. The present experimental study investigates mean and medium air chord length distributions in self-aerated chute flows for different flow Reynolds number and air concentration conditions. The relationship between microscopic and macroscopic aerated properties in air-water mixture region is analyzed. The distribution of microscopic specific air-water interface area with macroscopic air concentration variation remains self-similarity in self-aerated region. Considering the air-water structure differences in high and low aerated region, a new relationship is proposed for predicting the distributions of a specific air-water interface area, and the agreement between the measured and predicted results is satisfactory.

Key words

Air-water interface area self-aeration air chord size chute flow experimental study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wang H., Hu Z., Chanson H. Two–dimensional bubble clustering in hydraulic jumps [J]. Experimental Thermal and Fluid Science, 2015, 68: 711–721.CrossRefGoogle Scholar
  2. [2]
    Lima–neto E., Zhu D. Z., Rajaratnam N. Bubbly jet in stagnant water [J]. International Journal of Multiphase Flow, 2008, 34(12): 1130–1141.CrossRefGoogle Scholar
  3. [3]
    Yang H., Li R., Liang R. et al. A parameter analysis of a two–phase flow model for supersaturated total dissolved gas downstream spillways [J]. Journal of Hydrodynamics, 2016, 28(4): 648–657.CrossRefGoogle Scholar
  4. [4]
    Chanson H. Hydraulic Engineering in the 21st Century: Where to? [J]. Journal of Hydraulic Research, 2007, 5(3): 291–301.CrossRefGoogle Scholar
  5. [5]
    Cain P. Measurements withi. Self–Aerated flow on a large spillway [D]. Ph. D. thesis, Christchurch, New Zealand, University of Canterbury, 1978.Google Scholar
  6. [6]
    Chanson H., Toombes L. Air–water flows down stepped chutes: turbulence and flow structure observations [J]. International Journal of Multiphase Flow, 2002, 28(11): 1737–1761.CrossRefzbMATHGoogle Scholar
  7. [7]
    Wang H., Murzyn F., Chanson H. Total pressure fluctuations and two–phase flow turbulence in hydraulic jumps [J]. Experiments in Fluids, 2014, 55(11): 1–16.CrossRefGoogle Scholar
  8. [8]
    Wilhelms S. C., Gulliver J. S. Bubbles and waves description of self–aerated spillway flow [J]. Journal of Hydraulic Research, 2005, 43(5): 522–531.CrossRefGoogle Scholar
  9. [9]
    Yang H. X., Li R., Liang R. F. et al. A parameter analysis of a two–phase flow model for supersaturated total dissolved gas downstream spillways [J]. Journal of Hydrodynamics, 2016, 28(4): 648–657.CrossRefGoogle Scholar
  10. [10]
    Toombes L., Chanson H. Surface waves and roughness in self–aerated supercritical flow [J]. Environmental Fluid Mechanics, 2007, 7(3): 259–270.CrossRefGoogle Scholar
  11. [11]
    Kramer M., Chanson H. Transition flow regime on stepped spillways: air–water flow characteristics and step–cavity fluctuations [J]. Environmental Fluid Mechanics, 2018, 18(4): 947–965CrossRefGoogle Scholar
  12. [12]
    Wu J. H., Zhou Y., Ma F. Air entrainment of hydraulic jump aeration basin [J]. Journal of Hydrodynamics, 2018, 30(5), 962–965.CrossRefGoogle Scholar
  13. [13]
    Chanson H. Turbulent air–water flows in hydraulic structures: Dynamic similarity and scale effects [J]. Environmental Fluid Mechanics, 2009, 9(2): 125–142.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Chanson H. Hydraulics of aerated flows: qui pro quo? [J]. Journal of Hydraulic Research, 2013, 51(3): 223–243.CrossRefGoogle Scholar
  15. [15]
    Chanson H. Air–water interface area in supercritical flows down small–slope chutes [R]. Experimental investigation. Report No. CH151, the University of Queensland, Australia, 1996.Google Scholar
  16. [16]
    Hager W. H., Boes R. M. Hydraulic structures: a positive outlook into the future [J]. Journal of Hydraulic Research, 2014, 52(3): 299–310.CrossRefGoogle Scholar
  17. [17]
    Heller V. Scale effects in physical hydraulic engineering models [J]. Journal of Hydraulic Research, 2011, 49(3): 293–306.CrossRefGoogle Scholar
  18. [18]
    Pfister M., Chanson H. Two–phase air–water flows: Scale effects in physical modeling [J]. Journal of Hydrodynamics, 2011, 26(2): 291–298.CrossRefGoogle Scholar
  19. [19]
    Wei W., Deng J., Zhang F. Development of self–aeration process for supercritical chute flows [J]. International Journal of Multiphase Flow, 2016, 79: 172–180.CrossRefGoogle Scholar
  20. [20]
    Chanson H., Carosi G. Turbulent time and length scale measurements in high velocity open channel flows [J]. Experiments in Fluids, 2007, 42(3): 385–401.CrossRefGoogle Scholar
  21. [21]
    Brocchini M., Peregrine D. H. The dynamics of strong turbulence at free surfaces. Part 1. Description [J]. Journal of Fluid Mechanics, 2001, 449(15): 225–254.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Wei W, Deng J., Zhang F. et al. A numerical model for air concentration distribution in self–aerated open channel flows [J]. Journal of Hydrodynamics, 2015, 27(3), 394–402.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Wang-ru Wei (卫望汝)
    • 1
  • Wei-lin Xu (许唯临)
    • 1
  • Jun Deng (邓军)
    • 1
    Email author
  • Zhong Tian (田忠)
    • 1
  • Fa-xing Zhang (张法星)
    • 1
  1. 1.State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina

Personalised recommendations