Journal of Hydrodynamics

, Volume 30, Issue 6, pp 1001–1011 | Cite as

Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering

  • Dharmendra Tripathi
  • Shashi Bhushan
  • O. Anwar Bég
  • Noreen Sher Akbar


Peristaltic micro-pumps offer an excellent mechanism for delivery of a variety of medicines including drugs, corneal solutions etc. The surge in deployment of nanoparticles in medicine has provided new potential for such pumps. In light of this we investigate the time-dependent peristaltic flow of nanofluids with diffusive effects through a finite non-uniform channel, this geometry being more representative of real micro-pumps. Creeping flow is taken into account (inertial forces are small compared with viscous forces) i.e., Reynolds number is low (Re <1) and wavelength is also taken to be very large. The Buongiorno formulation for nanofluids is employed with an Oberbeck-Boussinesq approximation. Closed-form solutions are developed for the non-dimensional governing equations subject to physically realistic boundary conditions. Mathematica symbolic software is employed to evaluate the evolution of nanoparticle fraction, temperature, axial velocity, transverse velocity and pressure difference distribution along the length of the pump channel with variation in thermal Grashof number, basic-density (species i.e., mass) Grashof number, Brownian motion parameter and thermophoresis parameter.

Key words

Unsteady flow peristaltic pumps nanofluids medical engineering diffusive process grashof number thermophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the reviewers for their comments which have served to improve the present work.


  1. [1]
    Teymoori M. M., Abbaspour-Sani E. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications [J]. Sensors and Actuators A: Physical, 2005, 117(2): 222–229.CrossRefGoogle Scholar
  2. [2]
    Wang C. H., Lee G. B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels [J]. Journal of Micromechanics and Microengineering, 2006, 16(2): 341–348.CrossRefGoogle Scholar
  3. [3]
    Nabavi M. Steady and unsteady flow analysis in microdiffusers and micropumps: A critical review [J]. Microfluidics and nanofluidics, 2009, 6(5): 599–619.CrossRefGoogle Scholar
  4. [4]
    Li M., Brasseur J. G. Non-steady peristaltic transport in finite-length tubes [J]. Journal of Fluid Mechanics, 1993, 248: 129–151.CrossRefzbMATHGoogle Scholar
  5. [5]
    Misra J., Pandey S. A mathematical model for oesophageal swallowing of a food-bolus [J]. Mathematical and Computer Modelling, 2001, 33(8): 997–1009.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Tripathi D. Study of transient peristaltic heat flow through a finite porous channel [J]. Mathematical and Computer Modelling, 2013, 57(5): 1270–1283.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Tripathi D., Bég O. A. Transient magneto-peristaltic flow of couple stress biofluids: A magneto-hydro-dynamical study on digestive transport phenomena [J]. Mathematical Biosciences, 2013, 246(1): 72–83.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Grosjean C., Yang X., Tai Y. C. A thermo-pneumatic peristaltic micropump [C]. The 10th International Conference on Solid State Ionics, Sendai, Japan, 1999.Google Scholar
  9. [9]
    Choi S. U. S. Developments and applications of non-Newtonian flows [J]. ASME-Publications-Fed, 1995, 231: 99–106.Google Scholar
  10. [10]
    Prasad V. R., Gaffar S. A., Bég O. A. Non-similar computational solutions for free convection boundary-layer flow of a nanofluid from an isothermal sphere in a non-Darcy porous medium [J]. Journal of Nanofluids, 2015, 4(2): 203–213.CrossRefGoogle Scholar
  11. [11]
    Lu G., Duan Y. Y., Wang X. D. Evolution of nanofluid Rayleigh–Bénard flows between two parallel plates: A mesoscopic modeling study [J]. Journal of Nanotechnology in Engineering and Medicine, 2013, 4(4): 040905.CrossRefGoogle Scholar
  12. [12]
    Bég O. A., Prasad V., Vasu B. Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms [J]. Journal of Mechanics in Medicine and Biology, 2013, 13(4): 1350067.CrossRefGoogle Scholar
  13. [13]
    Tombácz E., Bica D., Hajdú A. Surfactant double layer stabilized magnetic nanofluids for biomedical application [J]. Journal of Physics: Condensed Matter, 2008, 20(20): 204103.Google Scholar
  14. [14]
    Bég O. A., Ferdows M., Shamina S. Numerical simulation of Marangoni magnetohydrodynamic bio-nanofluid convection from a non-isothermal surface with magnetic induction effects: A bio-nanomaterial manufacturing transport model [J]. Journal of Mechanics in Medicine and Biology, 2014, 14(3): 1450039.CrossRefGoogle Scholar
  15. [15]
    De Jong W. H., Borm P. J. Drug delivery and nanoparticles: Applications and hazards [J]. International Journal of Nanomedicine, 2008, 3(2): 133–149.CrossRefGoogle Scholar
  16. [16]
    Bég O. A., Tripathi D. Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: A bio-nano-engineering model [J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225(3): 99–114.Google Scholar
  17. [17]
    Tripathi D., Bég O. A. A study on peristaltic flow of nanofluids. Application in drug delivery systems [J]. International Journal of Heat and Mass Transfer, 2014, 70: 61–70.CrossRefGoogle Scholar
  18. [18]
    Nam J. M., Thaxton C. S., Mirkin C. A. Nanoparticlebased bio-bar codes for the ultrasensitive detection of proteins [J]. Science, 2003, 301(5641): 1884–1886.CrossRefGoogle Scholar
  19. [19]
    Buongiorno J. Convective transport in nanofluids [J]. Journal of Heat Transfer, 2006. 128(3): 240–250.CrossRefGoogle Scholar
  20. [20]
    Nield D., Kuznetsov A. Thermal instability in a porous medium layer saturated by a nanofluid [J]. International Journal of Heat and Mass Transfer, 2009, 52(25): 5796–5801.CrossRefzbMATHGoogle Scholar
  21. [21]
    Nield D., Kuznetsov A. V. The onset of convection in a horizontal nanofluid layer of finite depth [J]. European Journal of Mechanics-B/Fluids, 2010, 29(3): 217–223.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Nield D., Kuznetsov A. V. The onset of double-diffusive convection in a nanofluid layer [J]. International Journal of Heat and Fluid Flow, 2011, 32(4): 771–776.CrossRefGoogle Scholar
  23. [23]
    Freidoonimehr N., Rashidi M. M., Mahmud S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid [J]. International Journal of Thermal Sciences, 2015, 87: 136–145.CrossRefGoogle Scholar
  24. [24]
    Abolbashari M. H., Freidoonimehr N., Nazari F. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface [J]. Advanced Powder Technology, 2015, 26(2): 542–552.CrossRefGoogle Scholar
  25. [25]
    Akbar N. S., Nadeem S. Peristaltic flow of a Phan-Thien-Tanner nanofluid in a diverging tube [J]. Heat Transfer–Asian Research, 2012, 41(1): 10–22.CrossRefGoogle Scholar
  26. [26]
    Aly E. H., Ebaid A. Exact analytical solution for the peristaltic flow of nanofluids in an asymmetric channel with slip effect of the velocity, temperature and concentration [J]. Journal of Mechanics, 2014, 30(4): 411–422.CrossRefGoogle Scholar
  27. [27]
    Mustafa M., Hina S., Hayat T. Influence of wall properties on the peristaltic flow of a nanofluid: Analytic and numerical solutions [J]. International Journal of Heat and Mass Transfer, 2012, 55(17): 4871–4877.CrossRefGoogle Scholar
  28. [28]
    Akbar N. S., Nadeem S., Hayat T. Peristaltic flow of a nanofluid with slip effects [J]. Meccanica, 2012, 47(5): 1283–1294.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Abdu Latiff N. A. A., Uddin M. J., Bég O. A. Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet [J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 230(4): 177–187.Google Scholar
  30. [30]
    Prasad V. R., Gaffar S. A., Bég O. A. Heat and mass transfer of nanofluid from horizontal cylinder to micropolar fluidC [J]. Journal of Thermophysics and Heat Transfer, 2014, 29(1): 127–139.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Dharmendra Tripathi
    • 1
  • Shashi Bhushan
    • 2
  • O. Anwar Bég
    • 3
  • Noreen Sher Akbar
    • 4
  1. 1.Department of Science and HumanitiesNational Institute of TechnologyUttarakhandIndia
  2. 2.Department of Mechanical EngineeringManipal UniversityJaipurIndia
  3. 3.Department of Aeronautical and Mechanical EngineeringUniversity of SalfordManchesterUK
  4. 4.DBS & H CEMENational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations