Advertisement

Journal of Hydrodynamics

, Volume 30, Issue 5, pp 803–814 | Cite as

The effect of downstream resistance on flow diverter treatment of a cerebral aneurysm at a bifurcation: A joint computational-experimental study

  • Anderson C. O. Tsang
  • Billy Y. S. Yiu
  • Abraham Y. S. Tang
  • W. C. Chung
  • Gilberto K. K. Leung
  • Alexander K. K. Poon
  • Alfred C. H. Yu
  • Simon S. M. Lai
  • K. W. Chow
Article

Abstract

Intracranial aneurysm can lead to hemorrhagic stroke upon rupture. Deployment of flow diverters can restrict the blood flow into aneurysm and mitigate the rupture risk. Computational fluid dynamics (CFD) and ultrasonography with pulse-wave and color Doppler ultrasound measurements were employed jointly to investigate the complex flow pattern in cerebral aneurysms, both before and after the deployment of flow diverters. Patient-specific configurations of both bifurcation and side-wall aneurysms were selected. The effect of downstream flow resistance was investigated by adjusting the volume flow rate and pressure at the outlet vessels computationally and experimentally. Velocity profiles in the aneurysm measured from ultrasonography showed good agreement with those from computer simulations. The discrepancy in velocity between the computational and experimental sets of data is less than 10%. The downstream resistance can alter the volume flux into a bifurcation aneurysm with a flow diverter deployed by 236%, while the corresponding value of a side-wall aneurysm is negligible. The vorticity of the aneurysmal flow was reduced by more than 80% in both cases after stenting. This study demonstrated that careful investigation of downstream flow resistance of a bifurcation aneurysm is essential to provide an accurate assessment of the aneurysmal flow dynamics after flow diverter deployment.

Key words

Intracranial aneurysms computational fluid dynamics (CFD) doppler ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Partial financial support has been provided by the Seed Funding Program for Basic Research of The University of Hong Kong, and Innovation and Technology Fund (ITS/150/15) of the Government of the Hong Kong Special Administrative Region. We thank Synapse Therapeutic Limited (Hong Kong) for donating the Pipeline Embolization Device used in this study.

References

  1. [1]
    Sforza D. M., Putman C. M., Cebral J. R. Hemodynamics of cerebral aneurysms [J]. Annual Review of Fluid Mechanics, 2009, 41(1): 91–107.CrossRefzbMATHGoogle Scholar
  2. [2]
    Humphrey J. D., Taylor C. A. Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models [J]. Annual Review of Biomedical Engineering, 2008, 10: 221–246.CrossRefGoogle Scholar
  3. [3]
    KULCSÁR Z., Houdart E., Bonafé A. et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment [J]. American Journal of Neuroradiology, 2011, 32(1): 20–25.CrossRefGoogle Scholar
  4. [4]
    Valen-Sendstad K., Steinman D. A. Mind the gap: Impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators [J]. American Journal of Neuroradiology, 2014, 35(3): 536–543.CrossRefGoogle Scholar
  5. [5]
    Byrne G., Mut F., Cebral J. R. Quantifying the large-scale hemodynamics of intracranial aneurysms [J]. American Journal of Neuroradiology, 2014, 35(2): 333–338.CrossRefGoogle Scholar
  6. [6]
    Yu Y., Xu J., Fang Y. et al. Analysis of morphologic and hemodynamic parameters for unruptured posterior communicating artery aneurysms with oculomotor nerve palsy [J]. American Journal of Neuroradiology, 2013, 34(11): 2187–2191.CrossRefGoogle Scholar
  7. [7]
    Qiu X. N., Fei Z. M., Zhang J. et al. Influence of high-porosity mesh stent on hemodynamics of intracranial aneurysm: A computational study [J]. Journal of Hydrodynamics, 2013, 25(6): 848–855.CrossRefGoogle Scholar
  8. [8]
    Levitt M. R., Mcgah P. M., Aliseda A. et al. Cerebral aneurysms treated with flow-diverting stents: Computational models with intravascular blood flow measurements [J]. American Journal of Neuroradiology, 2014, 35(1): 143–148.CrossRefGoogle Scholar
  9. [9]
    Bouillot P., Brina O., Ouared R. et al. Computational fluid dynamics with stents: Quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents [J]. Journal of NeuroInterventional Surgery, 2016, 8(3): 309–315.CrossRefGoogle Scholar
  10. [10]
    Karmonik C., Anderson J. R., Beilner J. et al. Relationships and redundancies of selected hemodynamic and structural parameters for characterizing virtual treatment of cerebral aneurysms with flow diverter devices [J]. Journal of Biomechanics, 2016, 49(11): 2112–2117.CrossRefGoogle Scholar
  11. [11]
    Chong W., Zhang Y., Qian Y. et al. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: Correlation with clinical outcomes [J]. American Journal of Neuroradiology, 2014, 35(1): 136–142.CrossRefGoogle Scholar
  12. [12]
    Shojima M., Oshima M., Takagi K. et al. Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms [J]. Stroke, 2004, 35(11): 2500–2505.CrossRefGoogle Scholar
  13. [13]
    Boussel L., Rayz V., Mcculloch C. et al. Aneurysm growth occurs at region of low wall shear stress: Patientspecific correlation of hemodynamics and growth in a longitudinal study [J]. Stroke, 2008, 39(11): 2997–3002.CrossRefGoogle Scholar
  14. [14]
    Munarriz P. M., Gómez P. A., Paredes I. et al. Basic principles of hemodynamics and cerebral aneurysms [J]. World Neurosurgery, 2016, 88: 311–319.CrossRefGoogle Scholar
  15. [15]
    Fukazawa K., Ishida F., Umeda Y. et al. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points [J]. World Neurosurgery, 2015, 83(1): 80–86.CrossRefGoogle Scholar
  16. [16]
    Wang Q., Wang W. Z., Fei Z. M. et al. Simulation of blood flow in intracranial ICA-PComA aneurysm via computational fluid dynamics modeling [J]. Journal of Hydrodynamics, 2009, 21(5): 583–590.CrossRefGoogle Scholar
  17. [17]
    Wang S. Z., Chen J. L., Ding G. H. Non-newtonian computational hemodynamics in two patient-specific cerebral aneurysms with daughter saccules [J]. Journal of Hydrodynamics, 2010, 22(5): 639–646.CrossRefGoogle Scholar
  18. [18]
    Meng H., Tutino V. M., Xiang J. et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis [J]. American Journal of Neuroradiology, 2014, 35(7): 1254–1262.CrossRefGoogle Scholar
  19. [19]
    Xiang J., Tutino V. M., Snyder K. V. et al. CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment [J]. American Journal of Neuroradiology, 2014, 35(10): 1849–1857.CrossRefGoogle Scholar
  20. [20]
    Funamoto K., Suzuki Y., Hayase T. et al. Numerical validation of MR-measurement-integrated simulation of blood flow in a cerebral aneurysm [J]. Annals of Biomedical Engineering, 2009, 37(6): 1105–1116.CrossRefGoogle Scholar
  21. [21]
    Karmonik C., Yen C., Grossman R. G. et al. Intraaneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates [J]. Acta Neurochirurgica, 2009, 151(5): 479–485.CrossRefGoogle Scholar
  22. [22]
    Marzo A., Singh P., Larrabide I. et al. Computational hemodynamics in cerebral aneurysms: The effects of modeled versus measured boundary conditions [J]. Annals of Biomedical Engineering, 2011, 39(2): 884–896.CrossRefGoogle Scholar
  23. [23]
    Mcgah P. M., Levitt M. R., Barbour M. C. et al. Accuracy of computational cerebral aneurysm hemodynamics using patient-specific endovascular measurements [J]. Annals of Biomedical Engineering, 2014, 42(3): 503–514.CrossRefGoogle Scholar
  24. [24]
    Venugopal P., Valentino D., Schmitt H. et al. Sensitivity of patient-specific numerical simulation of cerebral aneurysm hemodynamics to inflow boundary conditions [J]. Journal of Neurosurgery, 2007, 106(6): 1051–1060.CrossRefGoogle Scholar
  25. [25]
    Müller J. D., Jitsumura M., Müller-Kronast N. H. Sensitivity of flow simulations in a cerebral aneurysm [J]. Journal of Biomechanics, 2012, 45(15): 2539–2548.CrossRefGoogle Scholar
  26. [26]
    Ford M. D., Nikolov H. N., Milner J. S. et al. PIVmeasured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models [J]. Journal of Biomechanical Engineering, 2008, 130(2): 021015.CrossRefGoogle Scholar
  27. [27]
    Le T. B., Troolin D. R., Amatya D. et al. Vortex phenomena in side-wall aneurysm hemodynamics: Experiment and numerical simulation [J]. Annals of Biomedical Engineering, 2013, 41(10): 2157–2170.CrossRefGoogle Scholar
  28. [28]
    Tsang A. C., Lai S. S., Chung W. C. et al. Blood flow in intracranial aneurysms treated with pipeline embolization devices: Computational simulation and verification with Doppler ultrasonography on phantom models [J]. Ultrasonography, 2015, 34(2): 98–108.CrossRefGoogle Scholar
  29. [29]
    Evju Ø., Valen-Sendstad K., Mardal K. A. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions [J]. Journal of Biomechanics, 2013, 46(16): 2802–2808.CrossRefGoogle Scholar
  30. [30]
    Berg P., Roloff C., Beuing O. et al. The computational fluid dynamics rupture challenge 2013-Phase II: Variability of hemodynamic simulations in two intracranial aneurysms [J]. Journal of Biomechanical Engineering, 2015, 137(12): 121008.CrossRefGoogle Scholar
  31. [31]
    Cebral J. R., Castro M. A., Burgess J. E. et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models [J]. American Journal of Neuroradiology, 2005, 26(10): 2550–2559.Google Scholar
  32. [32]
    Cebral J. R., Ollikainen E., Chung B. J. et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall [J]. American Journal of Neuroradiology, 2017, 38(1): 119–126.CrossRefGoogle Scholar
  33. [33]
    Kim M., Levy E. I., Meng H. et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm [J]. Neurosurgery, 2007, 61(6): 1305–1313.CrossRefGoogle Scholar
  34. [34]
    Lai S. S., Yiu B. Y., Poon A. K. et al. Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries [J]. Ultrasound in Medicine and Biology, 2013, 39(9): 1654–1664.CrossRefGoogle Scholar
  35. [35]
    Tang A. Y., Chung W. C., Liu E. T. et al. Computational fluid dynamics study of bifurcation aneurysms treated with pipeline embolization device: Side branch diameter study [J]. Journal of Medical and Biological Engineering, 2015, 35(3): 293–304.CrossRefGoogle Scholar
  36. [36]
    Szikora I., Berentei Z., Kulcsar Z. et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: The budapest experience with the pipeline embolization device [J]. American Journal of Neuroradiology, 2010, 31(6): 1139–1147.CrossRefGoogle Scholar
  37. [37]
    Appanaboyina S., Mut F., Löhner R. et al. Simulation of intracranial aneurysm stenting: Techniques and challenges [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45-46): 3567–3582.CrossRefzbMATHGoogle Scholar
  38. [38]
    Cheng S. W., Lam E. S., Fung G. S. et al. A computational fluid dynamic study of stent graft remodeling after endovascular repair of thoracic aortic dissections [J]. Journal of Vascular Surgery, 2008, 48(2): 303–310.CrossRefGoogle Scholar
  39. [39]
    Ramnarine K. V., Nassiri D. K., Hoskins P. R. et al. Validation of a new blood-mimicking fluid for use in Doppler flow test objects [J]. Ultrasound in Medicine and Biology, 1998, 24(3): 451–459.CrossRefGoogle Scholar
  40. [40]
    Enzmann D. R., Ross M. R., Marks M. P. et al. Blood flow in major cerebral arteries measured by phase-contrast cine MR [J]. American Journal of Neuroradiology, 1994, 15(1): 123–129.Google Scholar
  41. [41]
    Tanaka H., Fujita N., Enoki T. et al. Relationship between variations in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: Reference data from 125 healthy volunteers [J]. American Journal of Neuroradiology, 2006, 27(8): 1770–1775.Google Scholar
  42. [42]
    Hölscher T., Rodriguez-rodriguez J., Wilkening W. G. el al. Intraoperative brain ultrasound: A new approach to study flow dynamics in intracranial aneurysms [J]. Ultrasound in Medicine and Biology, 2006, 32(9): 1307–1313.CrossRefGoogle Scholar
  43. [43]
    Lee C. J., Srinivas K., Qian Y. Three-dimensional hemodynamic design optimization of stents for cerebral aneurysms [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228(3): 213–224.CrossRefGoogle Scholar
  44. [44]
    Jeong W., Han M. H., Rhee K. Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow [J]. Medical and Biological Engineering and Computing, 2013, 51(9): 981–990.CrossRefGoogle Scholar
  45. [45]
    Geers A. J., Larrabide I., Radaelli A. G. et al. Patientspecific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and C Tangiography: An in vivo reproducibility study [J]. American Journal of Neuroradiology, 2011, 32(3): 581–586.CrossRefGoogle Scholar
  46. [46]
    Schneiders J. J., Ferns S. P., van Ooij P. et al. Comparison of phase-contrast M Rimaging and endovascular sonography for intracranial blood flow velocity measurements [J]. American Journal of Neuroradiology, 2012, 33(9): 1786–1790.CrossRefGoogle Scholar
  47. [47]
    Han X., Liu X. S, Liang F. Y. The influence of outflow boundary conditions on blood flow patterns in an AcoA aneurysm [J]. Chinese Journal of Hydrodynamics, 2015, 30(6): 692–700(in Chinese).Google Scholar
  48. [48]
    Mu L. Z., He Y., Chen J. Y. et al. Study of blood flow regulation in a patient-specific model for the circle of Willis with an aneurysm by computational and in-vitro simulation [J]. Chinese Journal of Hydrodynamics, 2015, 30(6): 707–715(in Chinese).Google Scholar
  49. [49]
    Kan X. X., Bai Y. F., Ma T. et al. Fluid-structure interaction of aortic dissection based on the computed tomography reconstructed model [J]. Chinese Journal of Hydrodynamics, 2015, 30(6): 701–706(in Chinese).Google Scholar
  50. [50]
    Liu H. B., Qin K. R., Yuan W. X. et al. Acute effect of moderate intensity aerobic cycling exercise on carotid arterial stiffness and hemodynamics in sedentary controls [J]. Chinese Journal of Hydrodynamics, 2015, 30(6): 721–728(in Chinese).Google Scholar
  51. [51]
    Wang Y. X., Gao Z. M., Liu B. et al. A flow chamber device for simulating oscillatory shear stress in the common carotid artery after exercise training [J]. Chinese Journal of Hydrodynamics, 2015, 30(6): 650–656(in Chinese).Google Scholar
  52. [52]
    Chen J. L., Ding G. H., Yang X. J. et al. Effects of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations [J]. Journal of Hydrodynamics, 2011, 23(5): 660–668.CrossRefGoogle Scholar
  53. [53]
    Zhao J. W. Yin W. Y., Ding G. H. et al. Numerical simulation and analysis on the hemodynamics of an elastic aneurysm [J]. Journal of Hydrodynamics, 2008, 20(2): 216–224.CrossRefGoogle Scholar
  54. [54]
    Chen J. L., Wang S. Z., Ding G. H. et al. Patient-specific blood dynamic simulations in assessing endovascular occlusion of intracranial aneurysms [J]. Journal of Hydrodynamics, 2009, 21(2): 271–276.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Anderson C. O. Tsang
    • 1
  • Billy Y. S. Yiu
    • 2
  • Abraham Y. S. Tang
    • 3
  • W. C. Chung
    • 3
  • Gilberto K. K. Leung
    • 1
  • Alexander K. K. Poon
    • 4
  • Alfred C. H. Yu
    • 2
  • Simon S. M. Lai
    • 4
  • K. W. Chow
    • 3
  1. 1.Department of Surgery, Li Ka Shing Faculty of MedicineUniversity of Hong KongHong KongChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  3. 3.Department of Mechanical EngineeringUniversity of Hong KongHong KongChina
  4. 4.Department of Electrical and Electronic EngineeringUniversity of Hong KongHong KongChina

Personalised recommendations