Advertisement

Suppression of vortex-induced vibration features of a flexible riser by adding helical strakes

  • Dong-yang Chen (陈东阳)
  • Laith K. Abbas
  • Guo-ping Wang (王国平)
  • Xiao-ting Rui (芮筱亭)
  • Wei-jie Lu (陆卫杰)
Article

Abstract

Three dimensional (3D) Computational Fluid Dynamics/ Computational Structure Dynamics (CFD/CSD) numerical two-way coupling simulations are conducted on the flexible rise in order to improve the understanding of the dynamic response performance of the riser with and without helical strakes exposed to the phenomena called Vortex-Induced Vibration (VIV). The VIV responses of PVC riser without helical strakes are computed and compared with experimental data, which verified the accuracy of the present two-way coupling method. Subsequently, the dynamic behaviors of a short PVC riser with different kinds of helical strakes are studied. The vibration amplitudes along the riser, trajectories of the riser’s monitor point and vortex shedding contours are obtained by conducting a series of simulations. It is found that the helical strakes’ VIV suppression mechanisms are breaking the vortex structures and decrease the vortex shedding frequency of the bare riser. Moreover, attaching helical strake structure with reasonable geometrical configuration (such as appropriate strake height, strake pitch, the number of starts and strake coverages) to the flexible riser can achieve a good suppression effect. The effect is also diverse at different reduced velocity (Ur). The remarkable effect is found at Ur = 7 of the short riser, which has about 97% reduction in the transverse vibration response.

Key words

VIV Fluid structure interaction (FSI) Two-way coupling Helical strakes SST-SAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Liu D. F., Wang S. Q., Guo H. Y. Study on combined design criteria for marine risers conveying flowing fluid [J]. The Ocean Engineering, 2011, 19(2): 13–17. (In Chinese).Google Scholar
  2. [2]
    Sanaati B., Kato N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow [J]. Journal of Marine Science and Technology, 2013, 18(2): 247–261.CrossRefGoogle Scholar
  3. [3]
    Rakshit T., Atluri S., Dalton C. VIV of a composite riser at moderate Reynolds number using CFD [J]. Journal of Offshore Mechanics & Arctic Engineering, 2005, 130(1): 853–865.Google Scholar
  4. [4]
    Huang K., Chen H. C., Chen C. R. Vertical riser VIV simulation in sheared current [J]. International Journal of Offshore and Polar Engineering, 2012, 22(2): 142–149.MathSciNetGoogle Scholar
  5. [5]
    Silva A. R. D., Silveira N. A., Lima A. M. G. D. Flow-induced vibration of a circular cylinder in cross-flow at moderate Reynolds number [J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2016, 38(4): 1185–1197.CrossRefGoogle Scholar
  6. [6]
    Huang K. Riser VIV and its numerical simulation [J]. Engineering Sciences, 2013, 11(4): 55–60.Google Scholar
  7. [7]
    Blackburn H., Henderson R. Lock-in behavior in simulated vortex-induced vibration [J]. Experimental Thermal and Fluid Science, 1996, 12(2): 184–189.CrossRefGoogle Scholar
  8. [8]
    Baarholm G. S., Larsen C. M., Lie H. Reduction of VIV using suppression devices—An empirical approach [J]. Marine structures, 2005, 18(7): 489–510.CrossRefGoogle Scholar
  9. [9]
    Willden R. H. J., Graham J. M. R. Numerical prediction of VIV on long flexible circular cylinder [J]. Journal of Fluids & Structures, 2001, 15(3–4): 659–669.CrossRefGoogle Scholar
  10. [10]
    Meneghini J. R., Saltara F., Fregonesi R. A. et al. Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields [J]. European Journal of Mechanics, 2004, 23(1): 51–63.CrossRefzbMATHGoogle Scholar
  11. [11]
    Yamamoto C. T., Meneghini J. R., Saltara F., Fregonesi R. A., Jr J. A. F. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures, 2004, 19(4): 467–489.CrossRefGoogle Scholar
  12. [12]
    Hou G., Wang J., Layton A. Numerical methods for fluid-structure interaction—A review [J]. Communications in Computational Physics, 2012, 12(2): 337–377.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Guruswamy G. P. A review of numerical fluids/structures interface methods for computations using high-fidelity equations [J]. Computers & Structures, 2002, 80(1): 31–41.CrossRefGoogle Scholar
  14. [14]
    Bazilevs Y., Takizawa K., Tezduyar T. E. Computational Fluid-Structure Interaction: Methods and Applications [M], John Wiley & Sons, 2013.Google Scholar
  15. [15]
    Holmes S., Oakley O. H. Jr., Constantinides Y. Simulation of riser VIV using fully three dimensional CFD simulations [C]. Proceeding of OMAE2006, 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 2006, 563–570.Google Scholar
  16. [16]
    Liu X., Huang S., Xu J. S. CFD Simulations of oscillating flow around solid and perforated plates [J]. Journal of Shanghai Jiaotong University, 2007, 12(6): 845–850.zbMATHGoogle Scholar
  17. [17]
    Zhu H. J., Yao J., Ma Y., Zhao H., Tang Y. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders [J]. Journal of Fluids and Structures, 2015, 57: 66–80.CrossRefGoogle Scholar
  18. [18]
    Menter F. R., Kuntz M., Bender R. A scale-adaptive simulation model for turbulent flow predictions [J]. AIAA Journal, 2003–767, 2003.Google Scholar
  19. [19]
    Menter F. R., Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description [J]. Flow, Turbulence and Combustion, 2010, 85(1): 113–138.CrossRefzbMATHGoogle Scholar
  20. [20]
    Egorov Y., Menter F. R., Lechner R., Cokljat D. The Scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows [J]. Flow, Turbulence and Combustion, 2010, 85(1): 139–165.CrossRefzbMATHGoogle Scholar
  21. [21]
    Chen Y. F., Chen W. J., He Y. L., Zhang D. X. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop [J]. Journal of Shanghai Jiaotong University, 2014, 48(2): 234–238+243.Google Scholar
  22. [22]
    Jindal R., Datta N. Free dry and wet vibration of 2-way tapered hollow marine rudder with non-classical pivot: Theoretical study [C]. 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, Newfoundland, Canada, 2015, OMAE2015–41106.Google Scholar
  23. [23]
    Menter F. R., Egorov Y. A scale-adaptive simulation model using two-equation models [J]. AIAA paper, 2005–1095, Reno, NV, USA, 2005.Google Scholar
  24. [24]
    Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598–1605.CrossRefGoogle Scholar
  25. [25]
    ANSYS, ANSYS Workbench User’s Guide [M]. Release 16.0, Canonsburg, PA, USA: ANSYS, Inc., 2015.Google Scholar
  26. [26]
    Han X. X. Investigation on numerical simulation of the fluid-solid interaction characteristics for flexible riser [D]. Master Thesis, Guangzhou, China: South China University of Science and Technology, 2014(in Chinese).Google Scholar
  27. [27]
    Stappenbelt B., Lalji F., Tan G. Low mass ratio vortex-induced motion [C]. 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Australia, 2007, 1491–1497.Google Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Dong-yang Chen (陈东阳)
    • 1
  • Laith K. Abbas
    • 1
  • Guo-ping Wang (王国平)
    • 1
  • Xiao-ting Rui (芮筱亭)
    • 1
  • Wei-jie Lu (陆卫杰)
    • 2
  1. 1.Institute of Launch DynamicsNanjing University of Science and TechnologyNanjingChina
  2. 2.Nanjing Aerosun CorporationNanjingChina

Personalised recommendations