Advertisement

Journal of Bionic Engineering

, Volume 16, Issue 5, pp 769–793 | Cite as

Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review

  • Chaowei Huang
  • Zhiguang GuoEmail author
Article
  • 14 Downloads

Abstract

The slippery liquid-infused porous surfaces inspired by the microstructure of carnivorous nepenthes have aroused widespread attention, which show stable liquid repellency, glorious self-repairing powers and effective anti-fouling properties. The surfaces are manufactured via the infusion of lubricant oil into porous structures, a process which allows other fluids to slide off the interfaces readily. However, the practical applications of slippery liquid-infused surfaces are limited to the complicated preparation processes and poor oil lock ability. We aim to, in this review, present the fundamental theories of the slippery liquid-infused porous surface. Some typical natural examples are clarified while representative fabricating methods such as liquid flame spray, layer-by-layer assembly, lithography and so on are listed. The slippery surface can facilitate the manufacture of transparent and multi-functional slippery materials by means of straightforward procedures. The slippery liquid-infused porous surfaces were applied in hot water repellency, anti-fouling, ice-phobic, water condensation, control of underwater bubble transport and drag reduction. This article discusses all these issues along with emerging applications as well as future challenges.

Keywords

micro/nanoscale structure liquid-infused slippery liquid repellency low hysterisis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work is supported by the National Nature Science Foundation of China (NO 51675513 and 51735013).

References

  1. [1]
    Amiri M, Khonsari M M. On the thermodynamics of friction and wear — A review. Entropy, 2010, 12, 1021–1049.CrossRefGoogle Scholar
  2. [2]
    Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Advanced Materials, 2008, 20, 2842–2858.CrossRefGoogle Scholar
  3. [3]
    Xue X Y, Fu Y M, Wang Q, Xing L L, Zhang Y. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Advanced Functional Materials, 2016, 26, 3128–3138.CrossRefGoogle Scholar
  4. [4]
    Zhang Z Y, Zeng H M. Effects of thermal treatment on poly (ether ether ketone). Polymer, 1993, 34, 3648–3652.CrossRefGoogle Scholar
  5. [5]
    Spencer M S, Carnell P J H, Skinner W J. Mechanical removal of the diffusion layer in the electrolytic production of sodium dithionite. Chemical Communications, 1968, 7, 361–362.Google Scholar
  6. [6]
    Wang W, Salazar J, Vahabi H, Joshi-Imre A, Voit W E, Kota A K. Metamorphic superomniphobic surfaces. Advanced Materials, 2017, 29, 1700295.CrossRefGoogle Scholar
  7. [7]
    Wang W, Vahabi H, Movafaghi S, Kota A K. Superomniphobic surfaces with improved mechanical durability: Synergy of hierarchical texture and mechanical interlocking. Advanced Materials Interfaces, 2019, 1900538.Google Scholar
  8. [8]
    Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.CrossRefGoogle Scholar
  9. [9]
    Feng F, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 2002, 14, 1857–1860.CrossRefGoogle Scholar
  10. [10]
    Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38, 71–99.CrossRefGoogle Scholar
  11. [11]
    Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 2013, 4, 2176.CrossRefGoogle Scholar
  12. [12]
    Li S H, Huang J Y, Chen Z, Chen G Q, Lai Y K. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31–55.CrossRefGoogle Scholar
  13. [13]
    Pan S J, Guo R, Xu W J. Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AIChE Journal, 2014, 60, 2752–2756.CrossRefGoogle Scholar
  14. [14]
    Meng X F, Wang Z B, Wang L L, Heng L P, Jiang L. A stable solid slippery surface with thermally assisted self-healing ability. Journal of Materials Chemistry A, 2018, 6, 16355–16360.CrossRefGoogle Scholar
  15. [15]
    Robbins M O, Krim J. Energy dissipation in interfacial friction. MRS Bulletin, 1998, 23, 23–26.CrossRefGoogle Scholar
  16. [16]
    Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28, 988–994.CrossRefGoogle Scholar
  17. [17]
    Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40, 546–551.CrossRefGoogle Scholar
  18. [18]
    Wang S, Jiang L. Definition of superhydrophobic states. Advanced Materials, 2007, 19, 3423–3424.CrossRefGoogle Scholar
  19. [19]
    Jing X S, Guo Z G. Biomimetic super durable and stable surfaces with superhydrophobicity. Journal of Materials Chemistry A, 2018, 6, 16731–16768.CrossRefGoogle Scholar
  20. [20]
    Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443–447.CrossRefGoogle Scholar
  21. [21]
    Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, Mckinley G H, Varanasi K K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 2013, 9, 1772–1780.CrossRefGoogle Scholar
  22. [22]
    Shang L R, Yu Y R, Gao W, Wang Y T, Qu L L, Zhao Z, Chai R J, Zhao Y J. Bio-inspired anisotropic wettability surfaces from dynamic ferrofluid assembled templates. Advanced Functional Materials, 2018, 28, 1705802.CrossRefGoogle Scholar
  23. [23]
    Brown P S, Bhushan B. Liquid-impregnated porous polypropylene surfaces for liquid repellency. Journal of Colloid and Interface Science, 2017, 487, 437–443.CrossRefGoogle Scholar
  24. [24]
    Zhang P F, Zhang L W, Chen H W, Dong Z C, Zhang D Y. Surfaces inspired by the Nepenthes peristome for unidirectional liquid transport. Advanced Materials, 2017, 29, 1702995.CrossRefGoogle Scholar
  25. [25]
    Ellison A M. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology, 2006, 8, 740–747.CrossRefGoogle Scholar
  26. [26]
    Bauer U, Grafe T U, Federle W. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. Journal of Experimental Botany, 2011, 62, 3683–3692.CrossRefGoogle Scholar
  27. [27]
    Bi K D, Song X C, Wang Y J, Yang J K, Chen Y F. Anti-adhesion mechanisms of nepenthes waxy slippery zone surface. Journal of Mechanical Engineering, 2015, 51, 103–109.CrossRefGoogle Scholar
  28. [28]
    Wang L X, Zhou Q, Liu Q H. Dimensions of surface structures of slippery zone in nepenthes pitchers and bionic design of locust trapping plate. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42, 233–235.CrossRefGoogle Scholar
  29. [29]
    Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences, 2004, 101, 14138–14143.CrossRefGoogle Scholar
  30. [30]
    Bauer U, Federle W. The insect-trapping rim of Nepenthes pitchers: Surface structure and function. Plant Signaling & Behavior, 2009, 4, 1019–1023.CrossRefGoogle Scholar
  31. [31]
    Bauer U, Bohn H G, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proceedings of the Royal Society B: Biological Sciences, 2007, 275, 259–265.CrossRefGoogle Scholar
  32. [32]
    Riedel M, Eichner A, Jetter R. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta, 2003, 218, 87–97.CrossRefGoogle Scholar
  33. [33]
    Gaume L, Perret P, Gorb E, Gorb S, Labat J J, Rowe N. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Structure & Development, 2004, 33, 103–111.CrossRefGoogle Scholar
  34. [34]
    Gaume L, Forterre Y. A viscoelastic deadly fluid in carnivorous pitcher plants. PLOS ONE, 2007, 2, e1185.CrossRefGoogle Scholar
  35. [35]
    Bazile V, Moguédec G L, Marshall D J, Gaume L. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Annals of Botany, 2015, 115, 705–716.CrossRefGoogle Scholar
  36. [36]
    Owen Jr T P, Lennon K A, Santo M J, Anderson A N. Pathways for nutrient transport in the pitchers of the carnivorous plant Nepenthes alata. Annals of Botany, 1999, 84, 459–466.CrossRefGoogle Scholar
  37. [37]
    Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl I K. Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal, 2012, 71, 303–313.CrossRefGoogle Scholar
  38. [38]
    Lin J, Ma M, Jing X. The preparation of Nepenthes Bio-inspired superhydrophobic surface primary microstructure. IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, 2017, 274, 012066.CrossRefGoogle Scholar
  39. [39]
    Wang P, Zhang D, Lu Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids and Surfaces B: Biointerfaces, 2015, 136, 240–247.CrossRefGoogle Scholar
  40. [40]
    Manna U, Raman N, Welsh M A, Zayas-Gonzalez Y M, Blackwell H E, Palecek S P, Lynn D M. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: A controlled release approach. Advanced Functional Materials, 2016, 26, 3599–3611.CrossRefGoogle Scholar
  41. [41]
    Liu P, Zhang H D, He W Q, Li H L, Jiang J K, Liu M J, Sun H Y, He M L, Cui J X, Jiang L, Yao X. Development of “liquid-like” copolymer nanocoatings for reactive oil-repellent surface. ACS Nano, 2017, 11, 2248–2256.CrossRefGoogle Scholar
  42. [42]
    Wang L M, McCarthy T J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angewandte Chemie International Edition, 2016, 55, 244–248.CrossRefGoogle Scholar
  43. [43]
    Wooh S, Vollmer D. Silicone brushes: Omniphobic surfaces with low sliding angles. Angewandte Chemie International Edition, 2016, 55, 6822–6824.CrossRefGoogle Scholar
  44. [44]
    Zhao H X, Sun Q Q, Deng X, Cui J X. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Advanced Materials, 2018, 30, 1802141.CrossRefGoogle Scholar
  45. [45]
    Li J J, Liu Y H, Luo J B, Liu P X, Zhang C H. Excellent lubricating behavior of Brasenia schreberi mucilage. Langmuir, 2012, 28, 7797–7802.CrossRefGoogle Scholar
  46. [46]
    Yang W, Sherman V R, Gludovatz B, Mackey M, Zimmermann E A, Chang E H, Schaible E, Qin Z, Buehler M J, Ritchie R O, Meyers M A. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 2014, 10, 3599–3614.CrossRefGoogle Scholar
  47. [47]
    Kramer M O. Boundary layer stabilization by distributed damping. Naval Engineers Journal, 1962, 74, 341–348.CrossRefGoogle Scholar
  48. [48]
    Carpenter P W, Davies C, Lucey A D. Hydrodynamics and compliant walls: Does the dolphin have a secret?. Current Science, 2000, 758–765.Google Scholar
  49. [49]
    Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 2009, 21, 665–669.CrossRefGoogle Scholar
  50. [50]
    Bandyopadhyay P R, Hellum A M. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Scientific Reports, 2014, 4, 6650.CrossRefGoogle Scholar
  51. [51]
    Lang A W, Bradshaw M T, Smith J A, Wheelus J N, Motta P J, Habegeer M T, Hueter R E. Movable shark scales act as a passive dynamic micro-roughness to control flow separation. Bioinspiration & Biomimetics, 2014, 9, 036017.CrossRefGoogle Scholar
  52. [52]
    Lang A W, Motta P, Hidalgo P, Westcott M. Bristled shark skin: A microgeometry for boundary layer control?. Bioinspiration & Biomimetics, 2008, 3, 046005.CrossRefGoogle Scholar
  53. [53]
    Migler K B, Son Y, Qiao F, Flynn K. Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture. Journal of Rheology, 2002, 46, 383–400.CrossRefGoogle Scholar
  54. [54]
    Luo Y H, Liu Y F, Zhang D Y. Hydrodynamic testing of a biological sharkskin replica manufactured using the vacuum casting method. Surface Review and Letters, 2015, 22, 1550030.CrossRefGoogle Scholar
  55. [55]
    Luo Y H. Recent progress in exploring drag reduction mechanism of real sharkskin surface: A review. Journal of Mechanics in Medicine and Biology, 2015, 15, 1530002.CrossRefGoogle Scholar
  56. [56]
    Li F C, Cai W H, Zhang H N, Wang Y. Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations. Chinese Physics B, 2012, 21, 114701.CrossRefGoogle Scholar
  57. [57]
    Bhushan B. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21, 2262–2296.CrossRefGoogle Scholar
  58. [58]
    Daniel T L. Fish mucus: In situ measurements of polymer drag reduction. The Biological Bulletin, 1981, 160, 376–382.CrossRefGoogle Scholar
  59. [59]
    Yong J L, Chen F, Yang Q, Huo J L, Hou X. Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168–4217.CrossRefGoogle Scholar
  60. [60]
    Yong J L, Chen F, Yang Q, Farooq U, Hou X. Photoinduced switchable underwater superoleophobicity- superoleophilicity on laser modified titanium surfaces. Journal of Materials Chemistry A, 2015, 3, 10703–10709.CrossRefGoogle Scholar
  61. [61]
    Chen F, Zhang D S, Yang Q, Yong J L, Du G Q, Si J H, Yun F, Hou X. Bioinspired wetting surface via laser microfabrication. ACS Applied Materials & Interfaces, 2013, 5, 6777–6792.CrossRefGoogle Scholar
  62. [62]
    Yong J L, Chen F, Yang Q, Hou X. Femtosecond laser controlled wettability of solid surfaces. Soft Matter, 2015, 11, 8897–8906.CrossRefGoogle Scholar
  63. [63]
    Yong J L, Chen F, Yang Q, Du G Q, Shan C, Bian H, Farooq U, Hou X. Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry A, 2015, 3, 9379–9384.CrossRefGoogle Scholar
  64. [64]
    Yong J L, Chen F, Yang Q, Fang Y, Huo J L, Hou X. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chemical Communications, 2015, 48, 9813–9816.CrossRefGoogle Scholar
  65. [65]
    Yong J L, Chen F, Yang Q, Zhang D S, Farooq U, Du G Q, Hou X. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790–8795.CrossRefGoogle Scholar
  66. [66]
    Yong J L, Yang Q, Chen F, Zhang D S, Bian H, Ou Y, Si J H, Du G Q, Hou X. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. Journal of Materials Chemistry A, 2014, 2, 5499–5507.CrossRefGoogle Scholar
  67. [67]
    Yong J L, Yang Q, Chen F, Zhang D S, Bian H, Ou Y, Si J H, Du G Q, Hou X. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A, 2013, 111, 243–249.CrossRefGoogle Scholar
  68. [68]
    Yong J L, Chen F, Yang Q, Du G Q, Bian H, Zhang D S, Si J H, Yun F, Hou X. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Applied Materials & Interfaces, 2013, 5, 9382–9385.CrossRefGoogle Scholar
  69. [69]
    Bier M, Dietrich S. Vapour pressure of ionic liquids. Molecular Physics, 2010, 108, 211–214.CrossRefGoogle Scholar
  70. [70]
    Aromaa M, Arffman A, Suhonen H, Haapanen J, Keskinen J, Honkanen M, Nikkanen J P, Levanen E, Messing M E, Deppert K, Teisala H, Tuominen M, Kuusipalo J, Stepien M, Saarinen J J, Toivakka M, Makela J M. Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using liquid flame spray. Journal of Aerosol Science, 2012, 52, 57–68.CrossRefGoogle Scholar
  71. [71]
    Subramanyam S B, Rykaczewski K, Varanasi K K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir, 2013, 29, 13414–13418.CrossRefGoogle Scholar
  72. [72]
    Stepien M, Saarinen J J, Teisala H, Tuominen M, Haapanen J, Makela J M, Kuusipalo J, Toivakka M. Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Research Letters, 2013, 8, 444.CrossRefGoogle Scholar
  73. [73]
    Chen J, Liu J, He M, Li K Y, Cui D P, Zhang Q L, Zeng X P, Zhang Y F, Wang J J, Song Y L. Superhydrophobic surfaces cannot reduce ice adhesion. Applied Physics Letters, 2012, 101, 111603.CrossRefGoogle Scholar
  74. [74]
    Juuti P, Haapanen J, Stenroos C, Niemela-Anttonen H, Harra J, Koivuluoto H, Teisala H, Lahti J, Tuominen M, Kuusipalo J, Vuoristo P, Makela J M. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 2017, 110, 161603.CrossRefGoogle Scholar
  75. [75]
    Zhang P, Lv F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy, 2015, 82, 1068–1087.CrossRefGoogle Scholar
  76. [76]
    Tang Z Y, Wang Y, Podsiadlo P, Kotov N A. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials, 2006, 18, 3203–3224.CrossRefGoogle Scholar
  77. [77]
    Zhu G H, Cho S H, Zhang H, Zhao M M, Zacharia N S. Slippery liquid-infused porous surfaces (SLIPS) using layer-by-layer polyelectrolyte assembly in organic solvent. Langmuir, 2018, 34, 4722–4731.CrossRefGoogle Scholar
  78. [78]
    Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Advanced Functional Materials, 2014, 24, 6658–6667.CrossRefGoogle Scholar
  79. [79]
    Yong J L, Huo J L, Yang Q, Chen F, Fang Y, Wu X J, Liu L, Lu X Y, Zhang J Z, Hou X. Femtosecond laser direct writing of porous network microstructures for fabricating super- slippery surfaces with excellent liquid repellence and anti-cell proliferation. Advanced Materials Interfaces, 2018, 5, 1701479.CrossRefGoogle Scholar
  80. [80]
    Wu G, Paz M D, Chiussi S, Serra J, González P, Wang Y J, Leon B. Excimer laser chemical ammonia patterning on PET film. Journal of Materials Science: Materials in Medicine, 2009, 20, 597.Google Scholar
  81. [81]
    Dadsetan M, Mirzadeh H, Sharifi N. Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate. Radiation Physics and Chemistry, 1999, 56, 597–604.CrossRefGoogle Scholar
  82. [82]
    Yingling Y G, Garrison B J. Coarse-grained model of the interaction of light with polymeric material: Onset of ablation. The Journal of Physical Chemistry B, 2005, 109, 16482–16489.CrossRefGoogle Scholar
  83. [83]
    Yong J L, Chen F, Yang Q, Fang Y, Huo J L, Zhang J Z, Hou X. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Advanced Materials Interfaces, 2017, 4, 1700552.CrossRefGoogle Scholar
  84. [84]
    Baidya A, Das S K, Pradeep T. An aqueous composition for lubricant-free, robust, slippery, transparent coatings on diverse substrates. Global Challenges, 2018, 2, 1700097.CrossRefGoogle Scholar
  85. [85]
    Milionis A, Dang K, Prato M, Loth E, Bayer I S. Liquid repellent nanocomposites obtained from one-step water- based spray. Journal of Materials Chemistry A, 2015, 3, 12880–12889.CrossRefGoogle Scholar
  86. [86]
    Liu X J, Gu H C, Wang M, Du X, Gao B B, Elbaz A, Sun L D, Liao J L, Xiao P F, Gu Z Z. 3D printing of bioinspired liquid superrepellent structures. Advanced Materials, 2018, 30, 1800103.CrossRefGoogle Scholar
  87. [87]
    Villegas M, Cetinic Z, Shakeri A, Didar T F. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Analytica Chimica Acta, 2018, 1000, 248–255.CrossRefGoogle Scholar
  88. [88]
    Irajizad P, Hasnain M, Farokhnia N, Sajadi S M, Ghasemi H. Magnetic slippery extreme icephobic surfaces. Nature Communications, 2016, 7, 13395.CrossRefGoogle Scholar
  89. [89]
    Irajizad P, Ray S, Farokhnia N, Hasnain M, Baldelli S, Ghasemi H. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces. Advanced Materials Interfaces, 2017, 4, 1700009.CrossRefGoogle Scholar
  90. [90]
    Okada I, Shiratori S. High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Applied Materials & Interfaces, 2014, 6, 1502–1508.CrossRefGoogle Scholar
  91. [91]
    Masoudi A, Irajizad P, Farokhnia N, Kashyap V, Ghasemi H. Antiscaling magnetic slippery surfaces. ACS Applied Materials & Interfaces, 2017, 9, 21025–21033.CrossRefGoogle Scholar
  92. [92]
    Wang N, Xiong D S, Lu Y, Pan S, Wang K, Deng Y L, Shi Y. Design and fabrication of the lyophobic slippery surface and its application in anti-icing. The Journal of Physical Chemistry C, 2016, 120, 11054–11059.CrossRefGoogle Scholar
  93. [93]
    Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Advanced Materials Interfaces, 2014, 1, 1300138.CrossRefGoogle Scholar
  94. [94]
    Liu M M, Hou Y Y, Li J, Tie L, Guo Z G. Transparent slippery liquid-infused nanoparticulate coatings. Chemical Engineering Journal, 2018, 337, 462–470.CrossRefGoogle Scholar
  95. [95]
    Wang P, Li T P, Zhang D. Fabrication of non-wetting surfaces on zinc surface as corrosion barrier. Corrosion Science, 2017, 128, 110–119.CrossRefGoogle Scholar
  96. [96]
    Coady M J, Wood M, Wallace G Q, Nielsen K E, Kietzig A M, Labarthet F L, Ragogna P J. Icephobic behavior of UV-cured polymer networks incorporated into slippery lubricant-infused porous surfaces: Improving SLIPS durability. ACS Applied Materials & Interfaces, 2018, 10, 2890–2896.CrossRefGoogle Scholar
  97. [97]
    Xiang T F, Zhang M, Sadig H R, Li Z C, Zhang M X, Dong C D, Yang L, Chan W M, Li C. Slippery liquid-infused porous surface for corrosion protection with self-healing property. Chemical Engineering Journal, 2018, 345, 147–155.CrossRefGoogle Scholar
  98. [98]
    Wang X Q, Gu C D, Wang L Y, Zhang J L, Tu J P. Ionic liquids-infused slippery surfaces for condensation and hot water repellency. Chemical Engineering Journal, 2018, 343, 561–571.CrossRefGoogle Scholar
  99. [99]
    Togasawa R, Tenjimbayashi M, Matsubayashi T, Moriya T, Manabe K, Shiratori S. A fluorine-free slippery surface with hot water repellency and improved stability against boiling. ACS Applied Materials & Interfaces, 2018, 10, 4198–4205.CrossRefGoogle Scholar
  100. [100]
    Liu Y, Chen X, Xin J H. Can superhydrophobic surfaces repel hot water?. Journal of Materials Chemistry, 2009, 19, 5602–5611.CrossRefGoogle Scholar
  101. [101]
    Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chemical Communications, 2016, 52, 2744–2747.CrossRefGoogle Scholar
  102. [102]
    Urata C, Masheder B, Cheng D F, Hozumi A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chemical Communications, 2013, 49, 3318–3320.CrossRefGoogle Scholar
  103. [103]
    Togasawa R, Ohnuki F, Shiratori S. A biocompatible slippery surface based on a boehmite nanostructure with omniphobicity for hot liquids and boiling stability. ACS Applied Nano Materials, 2018, 1, 1758–1765.CrossRefGoogle Scholar
  104. [104]
    Chong T H, Sheikholeslami R. Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation. Chemical Engineering Science, 2001, 56, 5391–5400.CrossRefGoogle Scholar
  105. [105]
    Zang D M, Zhu R W, Zhang W, Wu J, Yu X Q, Zhang Y F. Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance. Corrosion Science, 2014, 83, 86–93.CrossRefGoogle Scholar
  106. [106]
    Zhang P Y, Xu D K, Li Y C, Yang K, Gu T Y. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, 101, 14–21.CrossRefGoogle Scholar
  107. [107]
    Tenjimbayashi M, Nishioka S, Kobayashi Y, Kawase K, Li J, Abe J, Shiratori S. A lubricant-sandwiched coating with long-term stable anticorrosion performance. Langmuir, 2018, 34, 1386–1393.CrossRefGoogle Scholar
  108. [108]
    Jing X S, Guo Z G. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale, 2019, 11, 8870–8881.CrossRefGoogle Scholar
  109. [109]
    Li Q, Guo Z G. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. Journal of Colloid and Interface Science, 2019, 536, 507–515.CrossRefGoogle Scholar
  110. [110]
    Thomas S K, Cassoni R P, MacArthur C D. Aircraft anti-icing and de-icing techniques and modeling. Journal of Aircraft, 1996, 33, 841–854.CrossRefGoogle Scholar
  111. [111]
    Fortin G, Mayer C, Perron J. Icing wind tunnel study of a wind turbine blade deicing system: Simulation of deicing wind turbine blades with controlled electro-thermal systems. Sea Technology, 2008, 49, 41–44.Google Scholar
  112. [112]
    Slot H M, Gelinck E R M, Rentrop C, Heide E V. Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable Energy, 2015, 80, 837–848.CrossRefGoogle Scholar
  113. [113]
    Ishizaki T, Masuda Y, Sakamoto M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir, 2011, 27, 4780–4788.CrossRefGoogle Scholar
  114. [114]
    Xiu Y H, Liu Y, Hess D W, Wong C P. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology, 2010, 21, 155705.CrossRefGoogle Scholar
  115. [115]
    Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing. Atmospheric Research, 1998, 46, 143–158.CrossRefGoogle Scholar
  116. [116]
    Beysens D, Knobler C M. Growth of breath figures. Physical Review Letters, 1986, 57, 1433.CrossRefGoogle Scholar
  117. [117]
    Varanasi K K, Hsu M, Bhate N, Yang W S, Deng T. Spatial control in the heterogeneous nucleation of water. Applied Physics Letters, 2009, 95, 094101.CrossRefGoogle Scholar
  118. [118]
    Umur A, Griffith P. Mechanism of dropwise condensation. Journal of Heat Transfer, 1965, 87, 275–282.CrossRefGoogle Scholar
  119. [119]
    Mikic B B. On mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 1969, 12, 1311–1323.CrossRefGoogle Scholar
  120. [120]
    Narhe R D, Beysens D A. Nucleation and growth on a superhydrophobic grooved surface. Physical Review Letters, 2004, 93, 076103.CrossRefGoogle Scholar
  121. [121]
    Dorrer C, Ruehe J. Wetting of silicon nanograss: From superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2008, 20, 159–163.CrossRefGoogle Scholar
  122. [122]
    Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces. Physical Review Letters, 2009, 103, 184501.CrossRefGoogle Scholar
  123. [123]
    Dorrer C, Rühe J. Some thoughts on superhydrophobic wetting. Soft Matter, 2009, 5, 51–61.CrossRefGoogle Scholar
  124. [124]
    Dietz C, Rykaczewski K, Fedorov A G, Joshi Y. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Applied Physics Letters, 2010, 97, 033104.CrossRefGoogle Scholar
  125. [125]
    Chen X M, Wu J, Ma R Y, Hua M, Koratkar N, Yao S H, Wang Z K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Advanced Functional Materials, 2011, 21, 4617–4623.CrossRefGoogle Scholar
  126. [126]
    Rykaczewski K, Scott J H J. Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano, 2011, 5, 5962–5968.CrossRefGoogle Scholar
  127. [127]
    Rykaczewski K, Chinn J, Walker M L, Scott J H J, Chinn A, Jones W. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. ACS Nano, 2011, 5, 9746–9754.CrossRefGoogle Scholar
  128. [128]
    Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 2012, 6, 1776–1785.CrossRefGoogle Scholar
  129. [129]
    Anderson D M, Gupta M K, Voevodin A A, Hunter C N, Putnam S A, Tsukruk V V, Fedorov A G. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. ACS Nano, 2012, 6, 3262–3268.CrossRefGoogle Scholar
  130. [130]
    Anand S, Paxson A T, Dhiman R, Smith J D, Varanasi K K. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano, 2012, 6, 10122–10129.CrossRefGoogle Scholar
  131. [131]
    Zhang C H, Zhang B, Ma H Y, Li Z, Xiao X, Zhang Y H, Cui X Y, Yu C M, Cao M Y, Jiang L. Bioinspired pressure- tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano, 2018, 12, 2048–2055.CrossRefGoogle Scholar
  132. [132]
    Tang X, Xiong H R, Kong T T, Tian Y, Li W D, Wang L Q. Bioinspired nanostructured surfaces for on-demand bubble transportation. ACS Applied Materials & Interfaces, 2018, 10, 3029–3038.CrossRefGoogle Scholar
  133. [133]
    Yu C M, Zhu X B, Li K, Cao M Y, Jiang L. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface. Advanced Functional Materials, 2017, 27, 1701605.CrossRefGoogle Scholar
  134. [134]
    Rosenberg B J, Buren T V, Fu M K, Smits A J. Turbulent drag reduction over air-and liquid-impregnated surfaces. Physics of Fluids, 2016, 28, 015103.CrossRefGoogle Scholar
  135. [135]
    Bechert D W, Bruse M, Hage W, Van der Hoeven J G T, Hoppe G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997, 338, 59–87.CrossRefGoogle Scholar
  136. [136]
    Bechert D W, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs. Journal of Fluid Mechanics, 1989, 206, 105–129.CrossRefGoogle Scholar
  137. [137]
    Debisschop J R, Nieuwstadt F T M. Turbulent boundary layer in an adverse pressure gradient-effectiveness of riblets. AIAA Journal, 1996, 34, 932–937.CrossRefGoogle Scholar
  138. [138]
    Gad-el-Hak M. Boundary layer interactions with compliant coatings: An overview. Applied Mechanics Reviews, 1986, 39, 511–524.CrossRefGoogle Scholar

Copyright information

© Jilin University 2019

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhanChina
  2. 2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations