Journal of Bionic Engineering

, Volume 16, Issue 4, pp 742–753 | Cite as

Bio-inspiration as a Concept for Sustainable Constructions Illustrated on Graded Concrete

  • Rafael HornEmail author
  • Stefan Albrecht
  • Walter Haase
  • Max Langer
  • Daniel Schmeer
  • Werner Sobek
  • Olga Speck
  • Philip Leistner


The building industry is one of the main contributors to worldwide resource consumption and anthropogenic climate change. Therefore, sustainable solutions in construction are particularly urgent. Inspired by the success principles of living nature, biologists and engineers present here an interdisciplinary work: The sustainability assessment of a bio-inspired material technology called graded concrete, which was developed at ILEK. Gradient structural materials can be found in plants on different hierarchical levels, providing a multitude of creative solutions for technology. Graded concrete applies this biological concept of structural optimization to the interior structure of concrete components to minimize material and resource expenditure. To evaluate the sustainability of this innovation, a newly developed quantitative Bio-inspired Sustainability Assessment (BiSA) method is applied. It focuses on the relationship of environmental, social and economic functions and the corresponding burdens quantified basing on life cycle assessment. The BiSA of graded concrete slabs shows significant improvements over conventional concrete for the applied use case. While an overall reduction of environmental burdens by 13% is expected, economic burdens can be reduced by up to 40% and social burdens by 35.7%. The assessment of the graded concrete technology identifies its potential with regard to sustainable construction. The presented work provides a blueprint for the interdisciplinary, integrative work on sustainable, bio-inspired innovations. It shows that the synergies of bio-inspiration and BiSA within technical product development can be fruitful.


sustainability assessment bio-inspired sustainability graded concrete biomimetic promise BiSA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was mainly done under the support of the CRC-Transregio 141 “Biological Design and Integrative Structures—Analysis, Simulation and Implementation in Architecture”/project C01 funded by the German Research Foundation DFG. Significant contributions were made under the support of the project “Leichtbau im Bauwesen” funded by the ministry of economy Baden-Württemberg based on the results of the research projects “Effiziente automatisierte Herstellung multifunktionaler Bauteile mit mineralisierten Hohlkörpern” in the scope of the priority program 1542 “Leicht Bauen mit Beton” funded by the German Research Foundation DFG and “Multifunktional gradierte Bauteile für das nachhaltige Bauen mit Beton” supported by the Baden-Württemberg Foundation. The authors thank the Wirtschaftsministerium Baden-Württemberg for the financial support of this publication.

Supplementary material

42235_2019_60_MOESM1_ESM.pdf (201 kb)
Supplementary file 1 Bio-inspiration as a Concept for Sustainable Constructions Illustrated on Graded Concrete
42235_2019_60_MOESM2_ESM.pdf (112 kb)
Supplementary file 2 Bio-inspiration as a Concept for Sustainable Constructions Illustrated on Graded Concrete


  1. [1]
    Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014.Google Scholar
  2. [2]
    UNFCCC. Adoption of the Paris Agreement, Paris Agreement, Paris, France, 2015.Google Scholar
  3. [3]
    United Nations Sustainable Buildings and Construction Programme, the 10YFP programme on sustainable buildings and construction, 2016.Google Scholar
  4. [4]
    Baumert K A, Herzog T, Pershing J. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy, World Resources Institute, Washington D.C., USA, 2005.Google Scholar
  5. [5]
    Barcelo L, Kline J, Walenta G, Gartner E. Cement and carbon emissions. Materials and Structures, 2014, 47, 1055–1065.CrossRefGoogle Scholar
  6. [6]
    IEA. Cement Technology Roadmap 2009: Carbon Emissions Reductions Up To 2050, IEA Technology Roadmaps, OECD Publishing, Paris, France, 2009.Google Scholar
  7. [7]
    Technology Roadmap Energy Efficient Building Envelopes, International Energy Agency, Paris, France, 2013.Google Scholar
  8. [8]
    Xi F, Davis S J, Ciais P, Crawford-Brown D, Guan D, Pade C, Shi T, Syddall M, Lv J, Ji L Z, Bing L F, Wang J Y, Wei W, Yang K-H, Lagerblad B, Galan I, Andrade C, Zhang Y, Liu Z. Substantial global carbon uptake by cement carbonation. Nature Geoscience, 2016, 9, 880–883.CrossRefGoogle Scholar
  9. [9]
    Kim T, Tae S, Chae C. Analysis of environmental impact for concrete using LCA by varying the recycling components, the compressive strength and the admixture material mixing. Sustainability, 2016, 8, 389.CrossRefGoogle Scholar
  10. [10]
    Amato I. Concrete Solutions: Cement manufacturing is a major source of greenhouse gases. But cutting emissions means mastering one of the most complex materials known. Nature, 2013, 49, 300–301.CrossRefGoogle Scholar
  11. [11]
    Sobek W. Die Zukunft des Leichtbaus. Herausforderungen und mögliche Entwicklungen. Bautechnik, 2015, 92, 879–882. (in German)CrossRefGoogle Scholar
  12. [12]
    Hamm C. Evolution of Lightweight Structures: Analyses and Technical Applications, Springer, Berlin, Germany, 2015.CrossRefGoogle Scholar
  13. [13]
    Sobek W. Zum Entwerfen im Leichtbau. Der Bauingenieur, 1995, 70, 323–329. (in German)Google Scholar
  14. [14]
    Wörner M, Schmeer D, Schuler B, Pfinder J, Garrecht H, Sawodny O, Sobek W. Gradientenbetontechnologie. Betonund Stahlbetonbau, 2016, 111, 794–805. (in German)CrossRefGoogle Scholar
  15. [15]
    Palkovic S D, Brommer D B, Kupwade-Patil K, Masic A, Buehler M J, Büyüköztürk O. Roadmap across the mesoscale for durable and sustainable cement paste — A bioinspired approach. Construction and Building Materials, 2016, 115, 13–31.CrossRefGoogle Scholar
  16. [16]
    Speck T, Speck O. Process sequences in biomimetic research. Design and Nature IV: Comparing Design in Nature with Science and Engineering, WIT Press, Southampton, UK, 2008, 3–11.Google Scholar
  17. [17]
    BiomimeticsConception and StrategyDifferences Between Biomimetic and Conventional Methods/Products, German and English version, VDI 6220, 2012.Google Scholar
  18. [18]
    Speck O, Speck D, Horn R, Gantner J, Sedlbauer K P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspiration & Biomimetics, 2017, 12, 11004.CrossRefGoogle Scholar
  19. [19]
    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14, 23–36.CrossRefGoogle Scholar
  20. [20]
    Wagner G P. Homologues, natural kinds and the evolution of modularity. American Zoologist, 1996, 36, 36–43.CrossRefGoogle Scholar
  21. [21]
    Rüggeberg M, Speck T, Paris O, Lapierre C, Pollet B, Koch G, Burgert I. Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proceedings of Biological Sciences, 2008, 275, 2221–2229.CrossRefGoogle Scholar
  22. [22]
    Kull U, Herbig A. Das Blattadersystem der Angiospermen. Form und Evolution. Naturwissenschaften, 1995, 82, 441–451. (in German)CrossRefGoogle Scholar
  23. [23]
    Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture: A review. Annals of Botany, 2001, 87, 553–566.CrossRefGoogle Scholar
  24. [24]
    McCoy R W. The anatomy of the leaf of Zeugites munroana, an anomalous grass. Bulletin of the Torrey Botanical Club, 1934, 61, 429–436.CrossRefGoogle Scholar
  25. [25]
    Liu X, Yan M, Galobardes I, Sikora K. Assessing the potential of functionally graded concrete using fibre reinforced and recycled aggregate concrete. Construction and Building Materials, 2018, 171, 793–801.CrossRefGoogle Scholar
  26. [26]
    Sobek W. Über die Gestaltung der Bauteilinnenräume: Meinem Freund Manfred Curbach zum 60. Geburtstag gewidmet. In: Scheerer S, van Stipriaan U. Festschrift zu Ehren von Prof. Dr.-Ing. Dr.-Ing. E.h. Manfred Curbach. Dresden, Germany: GWT-TUD GmbH, 2016. (in German)Google Scholar
  27. [27]
    Alam M S, Wahab M A, Jenkins C H. Mechanics in naturally compliant structures. Mechanics of Materials, 2007, 39, 145–160.CrossRefGoogle Scholar
  28. [28]
    Toader N, Sobek W, Nickel K G. Energy absorption in functionally graded concrete bioinspired by sea urchin spines. Journal of Bionic Engineering, 2017, 14, 369–378.CrossRefGoogle Scholar
  29. [29]
    Gleich A, Pade C, Petschow U, Pissarskoi E. Potentials and Trends in Biomimetics, Springer, Berlin, Heidelberg, Germany, 2010.CrossRefGoogle Scholar
  30. [30]
    von Gleich A. Das bionische Versprechen. Ist die Bionik so gut wie ihr Ruf? Ökologisches Wirtschaften, 2007, 22, 21–23. (in German)Google Scholar
  31. [31]
    Horn R, Gantner J, Widmer L, Sedlbauer K P, Speck O. Bio-inspired sustainability assessment: A conceptual framework. In: Knippers J, Nickel K G, Speck T, eds., Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, Springer, Cham, Switzerland, 2016, 361–377.CrossRefGoogle Scholar
  32. [32]
    Horn R, Dahy H, Gantner J, Speck O, Leistner P. Bio-inspired sustainability assessment for building product development — concept and case study. Sustainability, 2018, 10, 1–25.CrossRefGoogle Scholar
  33. [33]
    Pedersen Zari M. Ecosystem processes for biomimetic architectural and urban design. Architectural Science Review, 2014, 58, 106–119.CrossRefGoogle Scholar
  34. [34]
    Reap J, Baumeister D, Bras B. Holism, biomimicry and sustainable engineering. ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2005, 423–431.Google Scholar
  35. [35]
    Guinée J. Life cycle sustainability assessment: What is it and what are its challenges? In: Clift R and Druckman A eds., Taking Stock of Industrial Ecology, Springer, Cham, Switzerland, 2016, 45–68.CrossRefGoogle Scholar
  36. [36]
    Weidema B P, Ekvall T, Heijungs R. Guidelines for Application of Deepened and Broadened LCA, deliverable D18 of work package 5 of the CALCAS project, 2009.Google Scholar
  37. [37]
    Ziegler R, Ott K. The quality of sustainability science: A philosophical perspective. Sustainability: Science, Practice and Policy, 2017, 7, 31–44.Google Scholar
  38. [38]
    Environmental ManagementLife Cycle AssessmentPrinciples and Framework, German and English version, EN ISO 14040, 2006.Google Scholar
  39. [39]
    Environmental ManagementLife Cycle AssessmentRequirements and Guidelines, German version, EN ISO 14044, 2006.Google Scholar
  40. [40]
    ILCD handbookGeneral Guide for Life Cycle Assessment: Detailed Guidance, Publications Office of the European Union, Luxembourg, 2010.Google Scholar
  41. [41]
    GaBi ts. Sofware-System and Databases for Life Cycle Engineering, thinkstep AG, 2017.Google Scholar
  42. [42]
    GaBi Databases: Upgrades & Improvements, thinkstep AG, 2017.Google Scholar
  43. [43]
    Gantner J, Beck T, Horn R. CommONEnergy Deliverable 5.7. Social Impact Assessment of Shopping Mall Retrofitting, CommONEnergy Project, 2017.Google Scholar
  44. [44]
    Albrecht S, Endres H-J, Knüpffer E, Spierling S. Biokunststoffe — quo vadis? uwf UmweltWirtschaftsForum, 2016, 24, 55–62. (in German)CrossRefGoogle Scholar
  45. [45]
    Ko N, Lorenz M, Horn R, Krieg H, Baumann M. Sustainability assessment of Concentrated Solar Power (CSP) tower plants — Integrating LCA, LCC and LCWE in one framework. Procedia CIRP, 2018, 69, 395–400.CrossRefGoogle Scholar
  46. [46]
    Herrmann M, Sobek W. Gradientenbeton — Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierter Bauteile. Beton- und Stahlbetonbau, 2015, 110, 672–686. (in German)CrossRefGoogle Scholar
  47. [47]
    Liaver. Expanded glass technologies, [2017-12-29],
  48. [48]
    Carsana M, Bertolini L. Durability of lightweight concrete with expanded glass and silica fume. ACI Materials Journal, 2017, 114, 207–213.CrossRefGoogle Scholar
  49. [49]
    Popov M, Zakrevskaya L, Vaganov V, Hempel S, Mechtcherine V. Performance of lightweight concrete based on granulated foamglass. IOP Conference Series: Materials Science and Engineering, 2015, 96, 12017.CrossRefGoogle Scholar
  50. [50]
    Herrmann M. Gradientenbeton: Untersuchungen zur Gewichtsoptimierung einachsiger biege- und querkraftbeanspruchter Bauteile, Dissertation, Universität Stuttgart, Stuttgart, Germany, 2015. (in German)Google Scholar
  51. [51]
    Schmeer D, Sobek W. Weight-optimized and mono-material concrete components by the integration of mineralized hollow spheres. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Hamburg, Germany, 2017.Google Scholar
  52. [52]
    Schmidt-Bleek F, Bierter W. Das MIPS-Konzept. Weniger Naturverbrauch—mehr Lebensqualität durch Faktor 10, Droemer, München, Germany, 1998. (in German)Google Scholar
  53. [53]
    Saurat M, Ritthoff M. Calculating MIPS 2.0. Resources, 2013, 2, 581–607.CrossRefGoogle Scholar
  54. [54]
    Hallstedt S I. Sustainability criteria and sustainability compliance index for decision support in product development. Journal of Cleaner Production, 2017, 140, 251–266.CrossRefGoogle Scholar

Copyright information

© Jilin University 2019

Authors and Affiliations

  • Rafael Horn
    • 1
    Email author
  • Stefan Albrecht
    • 1
  • Walter Haase
    • 2
  • Max Langer
    • 3
  • Daniel Schmeer
    • 2
  • Werner Sobek
    • 2
  • Olga Speck
    • 3
  • Philip Leistner
    • 4
  1. 1.Fraunhofer Institute for Building Physics IBP GaBiStuttgartGermany
  2. 2.Institute for Lightweight Structures and Conceptual Design (ILEK)University of StuttgartStuttgartGermany
  3. 3.Plant Biomechanics Group, Botanic GardenUniversity of FreiburgFreiburgGermany
  4. 4.Institute for Acoustics and Building PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations