Advertisement

Transcriptome and proteome analyses of proteases in biotroph fungal pathogen Cladosporium fulvum

  • Mansoor Karimi JashniEmail author
  • Ate van der Burgt
  • Evy Battaglia
  • Rahim Mehrabi
  • Jérôme Collemare
  • Pierre J. G. M. de Wit
Original Article
  • 12 Downloads

Abstract

Proteases are key components of the hydrolytic enzyme arsenal employed by fungal pathogens to invade their host plants. The recent advances in -omics era have facilitated identification of functional proteases involved in plant-fungus interactions. By comparison of the publically available sequences of fungal genomes we found that the number of protease genes present in the genome of Cladosporium fulvum, a biotrophic tomato pathogen, is comparable with that of hemibiotrophs. To identify host plant inducible protease genes and their products, we performed transcriptome and proteome analyses of C. fulvumin vitro and in planta by means of RNA-Seq/RT-qPCR and mass spectrometry. Transcriptome data showed that 14 out of the 59 predicted proteases are expressed during in vitro and in planta growth of C. fulvum, of which nine belong to serine proteases S8 and S10 and the rest belong to metallo- and aspartic proteases. Mass spectrometry confirmed the presence of six proteases at proteome level during plant infection. Expression of limited number of proteases by C. fulvum might sustain biotrophic growth and benefits its stealth pathogenesis.

Keywords

Fungal proteases Gene expression Tomato pathogen Cladosoprium fulvum Plant-microbe interaction 

Notes

Acknowledgements

We are grateful to financial assistance for this research provided by Wageningen University and the Ministry of Science, Research and Technology (MSRT) of Iran. We do thank Dr. S. Boren in department of Biochemistry-Wageningen University for performing mass spectrometry analysis.

Author contributions

MKJ, JC, RM and PJGMdW conceived the project. MKJ, JC and AVB performed the statistical and bioinformatics analyses. MKJ have performed the mass spectrometry analysis. MKJ and EB carried out the experimental work. MKJ wrote the manuscript. All authors have approved the manuscript and agree with submission to JPP.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

42161_2019_433_MOESM1_ESM.docx (461 kb)
ESM 1 (DOCX 461 kb)

References

  1. Asis R, Muller V, Barrionuevo DL, Araujo SA, Aldao MA (2009) Analysis of protease activity in Aspergillus flavus and A. parasiticus on peanut seed infection and aflatoxin contamination. Eur J Plant Pathol 124:391–403CrossRefGoogle Scholar
  2. Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S (2009) A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 77:4041–4050PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bryant MK, Schardl CL, Hesse U, Scott B (2009) Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloë festucae. BMC Evol Biol 9:168.  https://doi.org/10.1186/1471-2148-9-168 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y et al (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature. 521:213–216PubMedPubMedCentralCrossRefGoogle Scholar
  5. Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ et al (2014) Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 9:e85877PubMedPubMedCentralCrossRefGoogle Scholar
  6. Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ (2005) Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17:1292–1305PubMedPubMedCentralCrossRefGoogle Scholar
  7. de Wit P, Spikman G (1982) Evidence for the occurence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol Plant Pathol 21:1–11CrossRefGoogle Scholar
  8. de Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA (2012) Aerts, et al. the genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 8:e1003088PubMedPubMedCentralCrossRefGoogle Scholar
  9. Di Cera E (2009) Serine proteases. IUBMB Life 61:510–515PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724PubMedCrossRefGoogle Scholar
  11. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230PubMedCrossRefGoogle Scholar
  12. Gál P, Harmat V, Kocsis A, Bián T, Barna L (2005) Ambrus, et al. a true autoactivating enzyme: structural insight into mannose-binding lectin-associated serine protease-2 activations. J Biol Chem 280:33435–33444PubMedCrossRefGoogle Scholar
  13. Griffiths S, Mesarich CH, Overdijk EJR, Saccomanno B, de Wit PJGM, Collemare J (2018) Down-regulation of cladofulvin biosynthesis is required for biotrophic growth of Cladosporium fulvum on tomato. Mol Plant Pathol 19(2):369–380PubMedCrossRefGoogle Scholar
  14. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704PubMedCrossRefGoogle Scholar
  15. Haiko J, Suomalainen M, Ojala T, Lahteenmaki K, Korhonen T (2009) Invited review: breaking barriers-attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 15:67–80PubMedCrossRefGoogle Scholar
  16. Hu G, Leger RJS (2004) A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol 17:1204–1214PubMedCrossRefGoogle Scholar
  17. Joosten MHAJ (2012) Isolation of apoplastic fluid from leaf tissue by the vacuum infiltration-centrifugation technique. In: Bolton MD, Thomma BPHJ (eds) Plant Fungal Pathogens. Humana Press, New York, pp 603–610CrossRefGoogle Scholar
  18. Karimi Jashni M, Dols IHM, Iida Y, Boeren S, Beenen HG, Mehabi R et al (2015a) Synergistic action of a metallo-protease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity and enhances fungal virulence. Mol Plant-Microbe Int 28(9):996–1008CrossRefGoogle Scholar
  19. Karimi Jashni M, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM (2015b) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584Google Scholar
  20. Li J, Yu L, Yang J, Dong L, Tian B et al (2010) New insights into the evolution of subtilisin-like serine protease genes in pezizomycotina. BMC Evol Biol 10:68PubMedPubMedCentralCrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408PubMedCrossRefGoogle Scholar
  22. Lu J, Boeren S, de Vries SC, van Valenberg HJF, Vervoort J, Hettinga K (2011) Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J Proteome 75:34–43CrossRefGoogle Scholar
  23. Mahmoudzadeh-Niknam H, McKerrow JH (2004) Leishmania tropica: cysteine proteases are essential for growth and pathogenicity. Exp Parasitol 106:158–163PubMedCrossRefGoogle Scholar
  24. Mesarich CH, Griffiths SA, van der Burgt A, Ökmen B, Beenen HG, Etalo DW et al (2014) Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mould pathogen Cladosporium fulvum. Mol Plant-Microbe Interact 27:846–857PubMedCrossRefGoogle Scholar
  25. Mesarich, C.H., Okmen, B., Rovenich, H., Griffiths, S.A., Wang, C., Karimi Jashni, M. et al. Specific hypersensitive response-associated recognition of new apoplastic effectors from Cladosporium fulvum in wild tomato. Mol Plant-Microbe Interact. 2018;31: 145–162PubMedCrossRefGoogle Scholar
  26. Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419PubMedCrossRefGoogle Scholar
  27. Muszewska A, Taylor JW, Szczesny P, Grynberg M (2011) Independent subtilases expansions in fungi associated with animals. Mol Biol Evol 28:3395–3404PubMedPubMedCentralCrossRefGoogle Scholar
  28. Naumann TA, Wicklow DT, Price NPJ (2011) Identification of a chitinase-modifying protein from Fusarium verticillioides. J Biol Chem 286:35358–35366PubMedPubMedCentralCrossRefGoogle Scholar
  29. O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065PubMedCrossRefGoogle Scholar
  30. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW et al (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8:e1003037PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ökmen B, Doehlemann G (2014) Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr Opin Plant Biol 20:19–25PubMedCrossRefGoogle Scholar
  32. Olivieri F, Eugenia Zanetti M, Oliva CR, Covarrubias AA, Casalongué CA (2002) Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. Eur J Plant Pathol 108:63–72CrossRefGoogle Scholar
  33. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  34. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635PubMedPubMedCentralGoogle Scholar
  35. Rawlings ND, Waller M, Barrett AJ, Bateman A (2013) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res:D503–D509PubMedPubMedCentralCrossRefGoogle Scholar
  36. Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell. 109:575–588PubMedCrossRefGoogle Scholar
  37. Sharon H, Hagag S, Osherov N (2009) Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold aspergillus fumigatus. Infect Immun 77:4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  38. Šimkovič M, Kurucová A, Hunová M, Varečka Ľ (2008) Induction of secretion of extracellular proteases from Trichoderma viride. Acta Chim Slov 1:250–264Google Scholar
  39. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. 330:1543–1546PubMedCrossRefGoogle Scholar
  40. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 485:635–641CrossRefGoogle Scholar
  41. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 25:1105–1111PubMedPubMedCentralCrossRefGoogle Scholar
  42. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515PubMedPubMedCentralCrossRefGoogle Scholar
  43. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:71–74CrossRefGoogle Scholar
  44. van den Ackerveken G, Vossen P, de Wit J (1993) The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103:91–96PubMedPubMedCentralCrossRefGoogle Scholar
  45. van der Burgt A, Karimi Jashni M, Bahkali AH, de Wit PJGM (2014) Pseudogenization in pathogenic fungi with different host plants and lifestyles might reflect their evolutionary past. Mol Plant Pathol 15:133–144PubMedCrossRefGoogle Scholar
  46. van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253CrossRefGoogle Scholar
  47. Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323PubMedCrossRefGoogle Scholar
  48. Zhao Z, Liu H, Wang C, Xu J-R (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2019

Authors and Affiliations

  1. 1.Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
  2. 2.Department of Plant PathologyTarbiat Modares UniversityTehranIran
  3. 3.DuPont Industrial Biosciences WageningenWageningenThe Netherlands
  4. 4.Fungal Natural ProductsWesterdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  5. 5.Department of Biotechnology, College of AgricultureIsfahan University of TechnologyIsfahanIran
  6. 6.Centre for BioSystems GenomicsWageningenThe Netherlands

Personalised recommendations