Advertisement

Comparison and validation of Oomycetes metabarcoding primers for Phytophthora high throughput sequencing

  • Jean Legeay
  • Claude Husson
  • Tristan Cordier
  • Corinne Vacher
  • Benoît Marcais
  • Marc BuéeEmail author
Short Communication

Abstract

Oomycetes are eukaryotic plant pathogens that require health monitoring. High-throughput sequencing (HTS) methods replace progressively cultivation-based approaches in soil surveys of Oomycetes, but very little control has been done from synthetic communities. Indeed, several potential biases do exist and need to be assessed for Oomycetes communities. We created a mock community by mixing DNA from 24 Phytophthora species. We amplified two barcode regions with Oomycete-specific primers before HTS. With this aim, we used three primer sets in nested PCR amplification, targeting the ITS-1 region or the RAS gene region. The three nested PCR strategies proved to be a reliable qualitative approach, identifying approximately 95% of the species after Illumina Miseq sequencing and bioinformatic analysis. However, quantitative proportions of each species showed distortions compared to the original mixture of the mock. In addition, we compared the two ITS primer sets on soil environmental DNA sampled from temperate forests. The ‘oom18S-ITS7/18ph2f-5.8S-1R’ primer set, more specific to Phytophthora, was able to detect seven Phytophthora species, confirming what was expected for temperate forests. Using the ‘DC6-ITS7/oom18S-ITS7’ primer set that covers the broader Peronosporaceans, we detected only one Phytophthora species among the dominance of Pythium and Phytopythium species. We concluded that ‘oom18S-ITS7/18ph2f-5.8S-1R’ primer set is a reliable tool for the qualitative description of environmental Phytophthora communities.

Keywords

Phytophthora Metabarcoding ITS region RAS gene Mock community 

Notes

Acknowledgements

We gratefully acknowledge E. Morin for her assistance in bioinformatics advices, and A. Gillet and L. Fauchery for their technical support. We also thank the members of the MetaBAR project (‘Meta-omics and microbial ecosystems’ INRA Metaprogramme), who provided the non-Phytophthora microbial genomics DNA from INRA microbe collections. We thank also one anonymous reviewer for providing helpful comments to improve our manuscript. JL holds PhD fellowships awarded by the “Agence Nationale de la Recherche” as part of the ANR Blanc program NEBEDIV (ANR-13-BSV7-0009) and by the “Institut National de la Recherche Agronomique” (Metaprogramme MEM). The UMR IAM is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Laboratory of Excellence ARBRE).

Supplementary material

42161_2019_276_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)
42161_2019_276_MOESM2_ESM.docx (67 kb)
ESM 2 (DOCX 66 kb)

References

  1. Aguayo J, Adams GC, Halkett F, Catal M, Husson C, Nagy ZÁ, Hansen EM, Marçais B, Frey P (2013) Strong genetic differentiation between North American and European populations of Phytophthora alni subsp. uniformis. Phytopathology 103:190–199.  https://doi.org/10.1094/PHYTO-05-12-0116-R CrossRefGoogle Scholar
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215, 403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Bakker MG (2018) A fungal mock community control for amplicon sequencing experiments.  https://doi.org/10.1111/1755-0998.12760
  4. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189.  https://doi.org/10.1186/1471-2180-10-189 CrossRefGoogle Scholar
  5. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57.  https://doi.org/10.1038/nmeth.2276 CrossRefGoogle Scholar
  6. Brasier CM, Vettraino AM, Chang TT et al (2010) Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol 59:595–603.  https://doi.org/10.1111/j.1365-3059.2010.02278.x CrossRefGoogle Scholar
  7. Buée M, Sentausa E, Murat C (2016) Molecular technologies applied to the ecology of ectomycorrhizal communities. In: Molecular Mycorrhizal Symbiosis, p 323.  https://doi.org/10.1002/9781118951446.ch18 CrossRefGoogle Scholar
  8. Català S, Pérez-Sierra A, Abad-Campos P (2015) The use of genus-specific amplicon pyrosequencing to assess Phytophthora species diversity using eDNA from soil and water in northern Spain. PLoS ONE 10(3):e0119311.  https://doi.org/10.1371/journal.pone.0119311 CrossRefGoogle Scholar
  9. Cerri M, Sapkota R, Coppi A, Ferri V, Foggi B, Gigante D, Lastrucci L, Selvaggi R, Venanzoni R, Nicolaisen M, Ferranti F, Reale L (2017) Oomycete communities associated with reed die-Back syndrome. Front Plant Sci 8:1550CrossRefGoogle Scholar
  10. Coince A, Cael O, Bach C, Lengelle J, Cruaud C, Gavory F, Morin E, Murat C, Marcais B, Buee M (2013) Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecol 6:223–235.  https://doi.org/10.3389/fpls.2017.01550 CrossRefGoogle Scholar
  11. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32.  https://doi.org/10.1006/fgbi.2000.1202 CrossRefGoogle Scholar
  12. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.  https://doi.org/10.1093/bioinformatics/btq461
  13. Egge E, Bittner L, Andersen T, Audic S, de Vargas C, Edvardsen B (2013) 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS One 8(9):e74371.  https://doi.org/10.1371/journal.pone.0074371 CrossRefGoogle Scholar
  14. Hansen E (2008) Alien forest pathogens : Phytophthora species are changing world forests. Boreal Environ Res 13:33–41Google Scholar
  15. Hansen E, Delatour C (1999) Phytophthora species in oak forests of North-East France. Ann For Sci 56:539–547.  https://doi.org/10.1051/forest:19990702 CrossRefGoogle Scholar
  16. Jung T, Blaschke H, Oßwald W (2010) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of location factors on the disease. Plant Pathol 49:706–718.  https://doi.org/10.1046/j.1365-3059.2000.00521.x CrossRefGoogle Scholar
  17. Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DF, Tör M, Van Den Ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJ, Petre B, Ristaino J, Yoshida K, Birch PR, Govers F (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434.  https://doi.org/10.1111/mpp.12190 CrossRefGoogle Scholar
  18. Miller KE, Hopkins K, Inward DJ, Vogler AP (2016) Metabarcoding of fungal communities associated with bark beetles. Ecol Evol 6:1590–1600.  https://doi.org/10.1002/ece3.1925 CrossRefGoogle Scholar
  19. Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393.  https://doi.org/10.1111/nph.12923 CrossRefGoogle Scholar
  20. Pérez-Izquierdo L, Morin E, Maurice JP, Martin F, Rincón A, Buée M (2017) A new promising phylogenetic marker to study the diversity of fungal communities: the glycoside hydrolase 63 gene. Mol Ecol Resour 17:e1–e11.  https://doi.org/10.1111/1755-0998.12678 CrossRefGoogle Scholar
  21. Riit T, Tedersoo L, Drenkhan R, Runno-Paurson E, Kokko H, Anslan S (2016) Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys. 14:17–30.  https://doi.org/10.3897/mycokeys.14.9244 CrossRefGoogle Scholar
  22. Sapkota R, Nicolaisen M (2015) An improved high throughput sequencing method for studying oomycete communities. J Microbiol Methods 110:33–39.  https://doi.org/10.1016/j.mimet.2015.01.013 CrossRefGoogle Scholar
  23. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Miller AN (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246.  https://doi.org/10.1073/pnas.1117018109 CrossRefGoogle Scholar
  24. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al., Sahl, J. W. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75, 7537-7541.  https://doi.org/10.1128/AEM.01541-09
  25. Scibetta S, Schena L, Chimento A, Cacciola SO, Cooke DEL (2012) A molecular method to assess Phytophthora diversity in environmental samples. J Microbiol Methods 88:356–368.  https://doi.org/10.1016/j.mimet.2011.12.012 CrossRefGoogle Scholar
  26. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21(8):1789–1793.  https://doi.org/10.1111/j.1365-294X.2012.05542.x CrossRefGoogle Scholar
  27. Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T (2016) Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol 82:7217–7226.  https://doi.org/10.1128/AEM.02576-16 CrossRefGoogle Scholar
  28. Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I et al (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43.  https://doi.org/10.3897/mycokeys.10.4852 CrossRefGoogle Scholar
  29. Tedersoo L, Tooming-Klunderud A, Anslan S (2018) PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol 217:1370–1385.  https://doi.org/10.1111/nph.14776 CrossRefGoogle Scholar
  30. Turner J, O’Neill P, Grant M, Mumford RA, Thwaites R, Studholme DJ (2017) Genome sequences of 12 isolates of the EU1 lineage of Phytophthora ramorum, a fungus-like pathogen that causes extensive damage and mortality to a wide range of trees and other plants. Genomics Data 12:17–21.  https://doi.org/10.1016/j.gdata.2017.02.006 CrossRefGoogle Scholar
  31. Vannini A, Bruni N, Tomassini A, Franceschini S, Vettraino AM (2013) Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests. FEMS Microbiol Ecol 83:433–442.  https://doi.org/10.1111/1574-6941.12132 CrossRefGoogle Scholar
  32. Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol Ecol Resour 16:388–401.  https://doi.org/10.1111/1755-0998.12456 CrossRefGoogle Scholar
  33. Weir B, Paderes E, Anand N, Uchida J, Pennycook S, Bellgard S, Beever R (2015) A taxonomic revision of Phytophthora Clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa 205:21–38.  https://doi.org/10.11646/phytotaxa.205.1.2 CrossRefGoogle Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2019

Authors and Affiliations

  1. 1.Université de LorraineInra, IAM NancyFrance
  2. 2.DGAL, SDQPV, Département de la santé des forêtsMinistère de l’agriculture et de l’alimentationParisFrance
  3. 3.BIOGECO, INRAUniversity of BordeauxPessacFrance

Personalised recommendations