Advertisement

Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles

  • Qingmin Wang
  • Jiameng Zhang
  • Zidong Zhang
  • Yanan Hao
  • Ke BiEmail author
Original Research

Abstract

Dielectric polymer-based nanocomposites with high dielectric constant and energy density have attracted extensive attention in modern electronic and electrical applications. Core-satellite BaTiO3-CoFe2O4 (BT-CF) structures with a BT core of ~ 100 nm and CF satellites (~ 28 nm) on the surface of the BT particle were prepared. The dielectric properties and energy storage density of PVDF nanocomposites were enhanced by BT-CF heterostructures at a small loading of CF nanoparticles. Compared to the general adopted BT/PVDF composites, the dielectric constant can be effectively improved with no additional loss by introducing a small amount of CF nanoparticles to the BT/PVDF composite. Moreover, the energy density and efficiency of the BT/PVDF nanocomposites were also improved by the small loading of CF. The discharged energy density of the BT-CF/PVDF nanocomposites with 7 wt.% CF nanoparticles showed that the maximal energy density value is 5.60 J/cm3 at the electric field of 263 kV/mm. The results showed that the small amount of CF nanoparticles has beneficial effects on enhancing the dielectric constant and energy storage of the BT/PVDF nanocomposites.

Graphical abstract

Core-satellite BaTiO3-CoFe2O4 (BT-CF) structures with a BT core of ~ 100 nm and CF satellites (~ 28 nm) were prepared.

Keywords

BaTiO3-CoFe2O4 heterostructures PVDF nanocomposites Enhanced dielectric properties Enhanced energy storage density 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61,774,020, 51,802,023 and 51,802,021), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), Science and Technology Plan of Shenzhen City (Grant No. JCYJ20180306173235924), State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201803), Key area research plan of Guangdong (Grant No. 2019B010937001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y (2018) Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51:513–523  https://doi.org/10.1016/j.nanoen.2018.07.006 CrossRefGoogle Scholar
  2. 2.
    Liang D, Zhu P, Han L, Zhang T, Li Y, Li S, Wang S, Lu P (2019) Composition dependence of structural and electronic properties of quaternary InGaNBi. Nanoscale Res Lett 14:178  https://doi.org/10.1186/s11671-019-2968-0 CrossRefGoogle Scholar
  3. 3.
    Lin S, Wang H, Zhang X, Wang D, Zu D, Song J et al (2019) Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 62:111–116  https://doi.org/10.1016/j.nanoen.2019.04.071 CrossRefGoogle Scholar
  4. 4.
    Wei N, Yu L, Sun Z, Song Y, Wang M, Tian Z et al (2019) Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13:7517–7526  https://doi.org/10.1021/acsnano.9b03157 CrossRefGoogle Scholar
  5. 5.
    Wu L, Lu P, Quhe R, Wang Q, Yang C, Guan P, Yang K (2018) Stanene nanomeshes as anode materials for Na-ion batteries. J Mater Chem A 6:7933–7941  https://doi.org/10.1039/c8ta01716f CrossRefGoogle Scholar
  6. 6.
    Badi N, Mekala R, Khasim S, Roy A, Ignatiev A (2018) Enhanced dielectric performance in PVDF/Al-Al2O3 core-shell nanocomposites. J. Mater. Sci-Mater. El. 29:10593–10599  https://doi.org/10.1007/s10854-018-9123-z CrossRefGoogle Scholar
  7. 7.
    Meng N, Mao R, Tu W, Odolczyk K, Zhang Q, Bilotti E, Reece M (2017) Crystallization kinetics and enhanced dielectric properties of free standing lead-free PVDF based composite films. Polymer 121:88–96  https://doi.org/10.1016/j.polymer.2017.06.009 CrossRefGoogle Scholar
  8. 8.
    Chi Q, Ma T, Dong J, Cui Y, Zhang Y, Zhang C et al (2017) Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci Rep 7:3072  https://doi.org/10.1038/s41598-017-03273-z CrossRefGoogle Scholar
  9. 9.
    Zhou L, Fu Q, Xue F, Tang X, Zhou D, Tian Y et al (2017) Multiple interfacial Fe3O4@BaTiO3/P(VDF-HFP) core-shell-matrix films with internal barrier layer capacitor (IBLC) effects and high energy storage density. Acs Appl Mater Inter 9:40792–40800  https://doi.org/10.1021/acsami.7b10923 CrossRefGoogle Scholar
  10. 10.
    Feng Y, Li W, Hou Y, Yu Y, Cao W, Zhang T, Fei W (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260  https://doi.org/10.1039/C4TC02183E CrossRefGoogle Scholar
  11. 11.
    Dai Y, Zhu X (2018) Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J Chem Eng 35:1570–1576  https://doi.org/10.1007/s11814-018-0047-3 CrossRefGoogle Scholar
  12. 12.
    Hao Y, Wang X, Bi K, Zhang J, Huang Y, Wu L et al (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56  https://doi.org/10.1016/j.nanoen.2016.11.008 CrossRefGoogle Scholar
  13. 13.
    Genchi G, Ceseracciu L, Marino A, Labardi M, Marras S, Pignatelli F et al (2016) P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv Healthc Mater 5:1808–1820  https://doi.org/10.1002/adhm.201600245 CrossRefGoogle Scholar
  14. 14.
    Tang H, Lin Y, Andrews C, Sodano H (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22:15702  https://doi.org/10.1088/0957-4484/22/1/015702 CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Tang H, Sodano H (2014) Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv Mater 26:7547–7554  https://doi.org/10.1002/adma.201403286 CrossRefGoogle Scholar
  16. 16.
    Liu S, Zhai J, Wang J, Xue S, Zhang W (2014) Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. Acs. Appl. Mater. Inter. 6:1533–1540  https://doi.org/10.1021/am4042096 CrossRefGoogle Scholar
  17. 17.
    Dang Z, Zhou T, Yao S, Yuan J, Zha J, Song H et al (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077–2082  https://doi.org/10.1002/adma.200803427 CrossRefGoogle Scholar
  18. 18.
    Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem C 22:16491–16498  https://doi.org/10.1039/c2jm32579a CrossRefGoogle Scholar
  19. 19.
    Tang H, Lin Y, Sodano H (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476  https://doi.org/10.1002/aenm.201100543 CrossRefGoogle Scholar
  20. 20.
    Chen J, Yu X, Yang F, Fan Y, Jiang Y, Zhou Y, Duan Z (2017) Enhanced energy density of polymer composites filled with BaTiO3@Ag nanofibers for pulse power application. J Mater Sci-Mater El 28:8043–8050  https://doi.org/10.1007/s10854-017-6510-9 CrossRefGoogle Scholar
  21. 21.
    Kim H, Johnson J, Chavez L, Garcia R, Tseng T, Lin Y (2018) Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram Int 44:9037–9044  https://doi.org/10.1016/j.ceramint.2018.02.107 CrossRefGoogle Scholar
  22. 22.
    Liang X, Yu S, Sun R, Luo S, Wan J, Yu S et al (2012) Microstructure and dielectric behavior of the three-phase Ag@SiO2/BaTiO3/PVDF composites with high permittivity. J Mater Res 27:991–998  https://doi.org/10.1557/jmr.2012.26 CrossRefGoogle Scholar
  23. 23.
    Wang H, Fu Q, Luo J, Zhao D, Luo L, Li W (2017) Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor. Appl Phys Lett 110:242902  https://doi.org/10.1063/1.4986443 CrossRefGoogle Scholar
  24. 24.
    Yang K, Huang X, He J, Jiang P (2015) Strawberry-like core-shell Ag@polydopamine@BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv Mater Inter 2:1500361  https://doi.org/10.1002/admi.201500361 CrossRefGoogle Scholar
  25. 25.
    Zhang C, Chi Q, Dong J, Cui Y, Wang X, Liu L, Lei Q (2016) Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci Rep 6:33508  https://doi.org/10.1038/srep33508 CrossRefGoogle Scholar
  26. 26.
    Zha J, Meng X, Wang D, Dang Z, Li R (2014) Dielectric properties of poly(vinylidene fluoride) nanocomposites filled with surface coated BaTiO3 by SnO2 nanodots. Appl Phys Lett 104:72906  https://doi.org/10.1063/1.4866269 CrossRefGoogle Scholar
  27. 27.
    Liu Z, Zhang J, Tang L, Zhou Y, Lin Y, Wang R, Kong J. Tang Y and Gu J (2019). Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. Part B-Eng. 178: 107466  https://doi.org/10.1016/j.compositesb.2019.107466 CrossRefGoogle Scholar
  28. 28.
    Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos Part B-Eng 175:107070  https://doi.org/10.1016/j.compositesb.2019.107070 CrossRefGoogle Scholar
  29. 29.
    Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Composites Communications 16:5–10  https://doi.org/10.1016/j.coco.2019.08.007 CrossRefGoogle Scholar
  30. 30.
    Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q (2017) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos Part A-Appl S 94:209–216  https://doi.org/10.1016/j.compositesa.2016.12.014 CrossRefGoogle Scholar
  31. 31.
    Ameli A, Arjmand M, Pötschke P, Krause B, Sundararaj U (2016) Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites. Carbon 106:260–278  https://doi.org/10.1016/j.carbon.2016.05.034 CrossRefGoogle Scholar
  32. 32.
    Khajehpour M, Arjmand M, Sundararaj U (2016) Dielectric properties of multiwalled carbon nanotube/clay/polyvinylidene fluoride nanocomposites: effect of clay incorporation. Polym Compos 37:161–167  https://doi.org/10.1002/pc.23167 CrossRefGoogle Scholar
  33. 33.
    Zheng M, Zheng Y, Zha J, Yang Y, Han P, Wen Y, Dang Z (2018) Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48:144–151  https://doi.org/10.1016/j.nanoen.2018.03.049 CrossRefGoogle Scholar
  34. 34.
    Arjmand M, Ameli A, Sundararaj U (2016) Employing nitrogen doping as innovative technique to improve broadband dielectric properties of carbon nanotube/polymer nanocomposites macromol. Mater Eng 301:555–565  https://doi.org/10.1002/mame.201500365 Google Scholar
  35. 35.
    Arjmand M, Sadeghi S, Khajehpour M, Sundararaj U (2016) Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: rheological and dielectric properties. J Phys Chem C 121:169–181  https://doi.org/10.1021/acs.jpcc.6b10741 CrossRefGoogle Scholar
  36. 36.
    Zeraati A, Arjmand M, Sundararaj U (2017) Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss. Acs Appl Mater Inter 9:14328–14336  https://doi.org/10.1021/acsami.6b14948 CrossRefGoogle Scholar
  37. 37.
    Arjmand M, Sundararaj U (2016) Impact of BaTiO3 as insulative ferroelectric barrier on the broadband dielectric properties of MWCNT/PVDF nanocomposites. Polym Compos 37:299–304  https://doi.org/10.1002/pc.23181 CrossRefGoogle Scholar
  38. 38.
    Ji W, Deng H, Fu Q (2017) Fabrication of graphene oxide/nickelous hydroxide nanosheets hybrid filler to improve the energy density of poly(vinylidene fluoride) based dielectric composites. IEEE T Dielect El In 24:749–756  https://doi.org/10.1109/TDEI.2017.006267 CrossRefGoogle Scholar
  39. 39.
    Pawar S, Arjmand M, Pötschke P, Krause B, Fischer D, Bose S, Sundararaj U (2018) Tuneable dielectric properties derived from nitrogen-doped carbon nanotubes in PVDF-based nanocomposites. ACS Omega 3:9966–9980  https://doi.org/10.1021/acsomega.8b01239 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.State Key Laboratory of information Photonics and Optical Communications, School of Science, Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong UniversityJinanChina

Personalised recommendations