One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors

  • Yunrui Tian
  • Xing Yang
  • Amit Nautiyal
  • Yayun Zheng
  • Qingping Guo
  • Jujie LuoEmail author
  • Xinyu ZhangEmail author
Original Research


We introduce a facile one-step microwave solid-state approach to prepare novel MoS2/MoO3 @graphite nanocomposite that can be utilized as an electrode material for supercapacitors. The electrochemical properties of nanocomposite are evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy tests. The nanocomposite exhibits the highest specific capacitance of 268 F g−1 for 3500 cycles at a current density of 1 A g−1. The nanocomposite shows excellent cyclic stability of 283% (258 F g−1) for over 6000 cycles in 6 M KOH electrolyte. In addition, the microwave method, which is prospected to realize industrial application, can be applied to partial sulfurization.

Graphical abstract

Schematic diagram of microwave initiated MoS2/MoO3 nanocomposite growth on graphite, and the highly stable MoS2/MoO3@graphite nanocomposite was synthesized using this one-step microwave approach.


Microwave synthesis MoS2/MoO3@graphite nanocomposite Supercapacitors 



The authors would like to thank the National Natural Science Foundation of China (21306124) for the financial support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fan LQ, Liu GJ, Zhang CY (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrog Energy 40:10150–10157CrossRefGoogle Scholar
  2. 2.
    Bulakhe RN, Nguyen VH, Shim JJ (2016) Layer-structured nanohybrid MoS2@rGO on 3D nickel foam for high performance energy storage applications. New J Chem 41:1473–1148CrossRefGoogle Scholar
  3. 3.
    Ji YJ, Wei QL, Sun YJ (2018) Superior capacitive performance enabled by edge-oriented and interlayer-expanded MoS2 nanosheets anchored on reduced graphene oxide sheets. Ind Eng Chem Res 57:4571–4576CrossRefGoogle Scholar
  4. 4.
    Ma L, Zhou XP, Xu LM, Xu XY, Zhang LL (2016) Microwave-assisted hydrothermal preparation of SnO2/MoS2 composites and their electrochemical performance. Nano 11:1777Google Scholar
  5. 5.
    Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950CrossRefGoogle Scholar
  6. 6.
    Xie BQ, Chen Y, Yu MY, Sun T, Lu LH, Xie T, Zhang Y, Wu YC (2016) Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 99:35–42CrossRefGoogle Scholar
  7. 7.
    Xu C, Li ZH, Yang C, Zou PC, Xie BH, Lin ZY, Zhang ZY, Li BH, Kang FY, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110CrossRefGoogle Scholar
  8. 8.
    Deng WT, Ji XB, Chen QY, Banks CE (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1:1171–1178CrossRefGoogle Scholar
  9. 9.
    Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sources 263:338–360CrossRefGoogle Scholar
  10. 10.
    Wang YG, Wang ZD, Xia YY (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50:5641–5646CrossRefGoogle Scholar
  11. 11.
    Zhi MJ, Xiang CC, Li JT, Li M, Wu NQ (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefGoogle Scholar
  12. 12.
    Zeng W, Zhang GH, Hou SC, Wang TH, Duan HG (2015) Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors. Electrochim Acta 151:510–516CrossRefGoogle Scholar
  13. 13.
    Zhang L, Du WY, Nautiyal A, Liu Z, Zhang XY (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61:303–352CrossRefGoogle Scholar
  14. 14.
    Zhang X, Zeng XZ, Yang M, Qi YX (2014) Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces 6:1125–1130CrossRefGoogle Scholar
  15. 15.
    Wang FX, Xiao SY, Hou YY, Hu CL, Liu LL, Wu YP (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3:13059–13084CrossRefGoogle Scholar
  16. 16.
    Mendoza-Sanchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Grant P (2013) An investigation of nanostructured thin film alpha-MoO3 based supercapacitor electrodes in anaqueous electrolyte. Electrochim Acta 91:253–260CrossRefGoogle Scholar
  17. 17.
    Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460CrossRefGoogle Scholar
  18. 18.
    Liu Y, Li L, Zhu JX, Xu JS, Liu SL, Wang YF, Zhang C, Liu TX (2018) A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv 6:13428–13437Google Scholar
  19. 19.
    Liu Y, Zhang BH, Yang YQ, Chang Z, Wen ZB, Wu YP (2013) Polypyrrole-coated alpha-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J Mater Chem A 1:13582–13587CrossRefGoogle Scholar
  20. 20.
    Jiang FR, Li WY, Zou RJ, Liu Q, Xu KB, An L, Hu JQ (2014) MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7:72–79CrossRefGoogle Scholar
  21. 21.
    Prakash NG, Dhananjaya M, Narayana AL, Shaik DPMD, Rosaiah P, Hussain OM (2018) High performance one dimensional alpha-MoO3 nanorods for supercapacitor application. Ceram Int 44:9967–9975CrossRefGoogle Scholar
  22. 22.
    Mahmood Q, Yun HJ, Kim WS, Park HS (2013) Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. J Power Sources 235:187–192CrossRefGoogle Scholar
  23. 23.
    Tao T, Chen QY, Hu HP, Chen Y (2012) MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater Lett 66:102–105CrossRefGoogle Scholar
  24. 24.
    Masikhwa TM, Madito MJ, Bello A, Dangbegnon JK, Manyala N (2017) High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. J Colloid Interface Sci 488:155–165CrossRefGoogle Scholar
  25. 25.
    Chen M, Wang JJ, Yan XH, Ren J, Dai Y, Wang Q, Wang YP, Cheng XN (2017) Flower-like molybdenum disulfide nanosheets grown on carbon nanosheets to form nanocomposites: novel structure and excellent electrochemical performance. J Alloys Compd 722:250–258CrossRefGoogle Scholar
  26. 26.
    Neetika SA, Malik VK, Chandra R (2018) One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. Int J Hydrog Energy 43:11141–11149CrossRefGoogle Scholar
  27. 27.
    Sari FNI, Ting JM (2018) MoS2/MoOx-nanostructure-decorated activated carbon cloth for enhanced supercapacitor performance. ChemSusChem 11:897–906CrossRefGoogle Scholar
  28. 28.
    Liu Z, Zhang L, Wang RG, Poyraz S, Cook J, Bozack MJ, Das S, Zhang XY, Hu LB (2016) Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci Rep-UK 6:22503CrossRefGoogle Scholar
  29. 29.
    Alamro T, Ram MK (2017) Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications. Electrochim Acta 235:623–631CrossRefGoogle Scholar
  30. 30.
    Vattikuti SVP, Nagajyothi PC, Reddy PAK, Kumar MK, Shim J, Byon C (2018) Tiny MoO3 nanocrystals self-assembled on folded molybdenum disulfide nanosheets via a hydrothermal method for supercapacitor. Mater Res Lett 6:432–441CrossRefGoogle Scholar
  31. 31.
    Tu CC, Peng PW, Lin LY (2018) Weight ratio effects on morphology and electrocapacitive performance for the MoS2/polypyrrole electrodes. Appl Surf Sci 444:789–799CrossRefGoogle Scholar
  32. 32.
    Chen M, Dai Y, Wang JJ, Wang Q, Wang YP, Cheng XN, Yan XH (2017) Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J Alloys Compd 696:900–906CrossRefGoogle Scholar
  33. 33.
    Lin TW, Sadhasivam T, Wang AY, Chen TY, Lin JY, Shao L (2018) Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem 5:1024–1031CrossRefGoogle Scholar
  34. 34.
    Chen YX, Ma WJ, Cai KF, Yang XW, Huang CJ (2017) In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624CrossRefGoogle Scholar
  35. 35.
    Kang NR, Paudel HP, Leuenberger MN, Tetard L, Khondaker SI (2014) Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J Phys Chem C 118:21258–21263CrossRefGoogle Scholar
  36. 36.
    Rasamani KD, Alimohammadi F, Sun Y (2017) Interlayer-expanded MoS2. Mater Today 20:83–91CrossRefGoogle Scholar
  37. 37.
    Sun Y, Gao S, Lei F, Xie Y (2015) Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev 44:623–636CrossRefGoogle Scholar
  38. 38.
    Bi YH, Nautiyal A, Zhang HP, Luo JJ, Zhang XY (2017) One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors. Electrochim Acta 260:952–958CrossRefGoogle Scholar
  39. 39.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  40. 40.
    Datta RS, Haque F, Mohiuddin M, Carey BJ, Syed N, Zavabeti A, Zhang B, Khan H, Berean KJ, Ou JZ, Mahmood N, Daeneke T, Kalantar-zadeh K (2017) Highly active two dimensional alpha-MoO3-x for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 5:24223–24231CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations