Advertisement

Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination

  • Liang Shen
  • Lian Tian
  • Jian Zuo
  • Xuan Zhang
  • Shipeng Sun
  • Yan WangEmail author
Original Research
  • 91 Downloads

Abstract

A desirable membrane with high separation performance, excellent antifouling properties, and chemical stability is important to the advance of forward osmosis (FO) technology in the wastewater treatment and desalination processes. In this work, three different tertiary amines, i.e., tri-ethylamine (TEA), tris(2-aminoethyl) amine (TAEA), and hexamethylenetetramine (HMTA), are employed as catalysts to accelerate the interfacial polymerization (IP) reaction for constructing the PA layer with optimized properties and performance of the resulting membranes. For the first time, the effect of different tertiary amines on the microstructure, morphology, and surface properties of formed PA layers, as well as the separation performance, fouling, and chemical resistance of the resulting TFC membranes, are studied systematically with various characterization techniques. As compared with the control membrane, modified membranes exhibit obviously improved separation performance and greater potential in the desalination process. Furthermore, modified membranes also exhibit improved fouling resistance and chemical stability. Therefore, the tertiary amine modification of TFC membranes may shed a new light for their future applications in harsh conditions.

Graphical abstract

Keywords

Forward osmosis Thin-film composite membrane In situ modification Tertiary amine catalyst Desalination 

Notes

Acknowledgments

We thank the financial support from the National Key Technology Support Program (no. 2014BAD12B06); National Natural Science Foundation of China (no. 21306058); Natural Science Foundation of Hubei Scientific Committee (2016CFA001); and Opening project of Key Laboratory of Biomedical Polymers of Ministry of Education at Wuhan University (no. 20140401). Special thanks are also given to the Analysis and Testing Center, the Analysis and Testing Center of Chemistry and Chemical Engineering School, and the State Key Laboratory of Materials Processing and Die & Mould Technology, in Huazhong University of Science and Technology, for their help with material characterizations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42114_2018_70_MOESM1_ESM.docx (774 kb)
ESM 1 (DOCX 773 kb)

References

  1. 1.
    Xu YC, Cheng XQ, Long J, Shao L (2016) A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 497:77–89.  https://doi.org/10.1016/j.memsci.2015.09.029 CrossRefGoogle Scholar
  2. 2.
    Lu TD, Chen BZ, Wang J, Jia TZ, Cao XL, Wang Y, Xing W, Lau CH, Sun SP (2018) Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. J Mater Chem A 6:15047–15056.  https://doi.org/10.1039/c8ta04504f CrossRefGoogle Scholar
  3. 3.
    Sukitpaneenit P, Chung T-S (2012) High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol 46(13):7358–7365.  https://doi.org/10.1021/es301559z CrossRefGoogle Scholar
  4. 4.
    Wang Y, Xu T (2015) Anchoring hydrophilic polymer in substrate: an easy approach for improving the performance of TFC FO membrane. J Membr Sci 476:330–339.  https://doi.org/10.1016/j.memsci.2014.11.025 CrossRefGoogle Scholar
  5. 5.
    Wang Y, Ou R, Wang H, Xu T (2015) Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. J Membr Sci 475:281–289.  https://doi.org/10.1016/j.memsci.2014.10.028 CrossRefGoogle Scholar
  6. 6.
    Xia QC, Wang J, Wang X, Chen BZ, Guo JL, Jia TZ, Sun SP (2017) A hydrophilicity gradient control mechanism for fabricating delamination-free dual-layer membranes. J Membr Sci 539:392–402.  https://doi.org/10.1016/j.memsci.2017.06.021
  7. 7.
    Shen L, Hung W-s, Zuo J, Zhang X, Lai J-Y, Wang Y (2019) High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. J Membr Sci 570–571:112–119.  https://doi.org/10.1016/j.memsci.2018.10.014
  8. 8.
    Shen L, Wang Y (2018) Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl) amine for forward osmosis separation. Chem Eng Sci 178:82–92.  https://doi.org/10.1016/j.ces.2017.12.026 CrossRefGoogle Scholar
  9. 9.
    Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471.  https://doi.org/10.1021/cr800208y CrossRefGoogle Scholar
  10. 10.
    She Q, Wang R, Fane AG, Tang CY (2016) Membrane fouling in osmotically driven membrane processes: a review. J Membr Sci 499:201–233.  https://doi.org/10.1016/j.memsci.2015.10.040 CrossRefGoogle Scholar
  11. 11.
    Lu X, Romero-Vargas Castrillon S, Shaffer DL, Ma J, Elimelech M (2013) In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance. Environ Sci Technol 47(21):12219–12228.  https://doi.org/10.1021/es403179m CrossRefGoogle Scholar
  12. 12.
    Xie M, Gray SR (2016) Gypsum scaling in forward osmosis: role of membrane surface chemistry. J Membr Sci 513:250–259.  https://doi.org/10.1016/j.memsci.2016.04.022 CrossRefGoogle Scholar
  13. 13.
    Liu M, Chen Q, Wang L, Yu S, Gao C (2015) Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 367:11–20.  https://doi.org/10.1016/j.desal.2015.03.028 CrossRefGoogle Scholar
  14. 14.
    Shen L, Zhang X, Zuo J, Wang Y (2017) Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. J Membr Sci 534:46–58.  https://doi.org/10.1016/j.memsci.2017.04.008 CrossRefGoogle Scholar
  15. 15.
    Xu G-R, Wang J-N, Li C-J (2013) Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 328:83–100.  https://doi.org/10.1016/j.desal.2013.08.022 CrossRefGoogle Scholar
  16. 16.
    Do VT, Tang CY, Reinhard M, Leckie JO (2012) Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ Sci Technol 46(2):852–859.  https://doi.org/10.1021/es203090y CrossRefGoogle Scholar
  17. 17.
    Cheng XQ, Liu Y, Guo Z, Shao L (2015) Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J Membr Sci 493:156–166.  https://doi.org/10.1016/j.memsci.2015.06.048 CrossRefGoogle Scholar
  18. 18.
    Cheng XQ, Shao L, Lau CH (2015) High flux polyethylene glycol based nanofiltration membranes for water environmental remediation. J Membr Sci 476:95–104.  https://doi.org/10.1016/j.memsci.2014.11.020 CrossRefGoogle Scholar
  19. 19.
    Azari S, Zou L (2012) Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J Membr Sci 401:68–75.  https://doi.org/10.1016/j.memsci.2012.01.041 CrossRefGoogle Scholar
  20. 20.
    Tiraferri A, Kang Y, Giannelis EP, Elimelech M (2012) Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl Mater Interfaces 4(9):5044–5053.  https://doi.org/10.1021/am301532g CrossRefGoogle Scholar
  21. 21.
    Cui Y, Liu X-Y, Chung T-S (2014) Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes. Chem Eng J 242:195–203.  https://doi.org/10.1016/j.cej.2013.12.078 CrossRefGoogle Scholar
  22. 22.
    Sun S-P, Chung T-S, Lu K-J, Chan S-Y (2014) Enhancement of flux and solvent stability of Matrimid®thin-film composite membranes for organic solvent nanofiltration. AICHE J 60(10):3623–3633.  https://doi.org/10.1002/aic.14558 CrossRefGoogle Scholar
  23. 23.
    Ong RC, Chung T-S, de Wit JS, Helmer BJ (2015) Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 473:63–71.  https://doi.org/10.1016/j.memsci.2014.08.046 CrossRefGoogle Scholar
  24. 24.
    Zhang S, Fu F, Chung T-S (2013) Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chem Eng Sci 87:40–50.  https://doi.org/10.1016/j.ces.2012.09.014 CrossRefGoogle Scholar
  25. 25.
    Han G, Zhang S, Li X, Chung T-S (2013) High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. J Membr Sci 440:108–121.  https://doi.org/10.1016/j.memsci.2013.04.001 CrossRefGoogle Scholar
  26. 26.
    Wang H, Li L, Zhang X, Zhang S (2010) Polyamide thin-film composite membranes prepared from a novel triamine 3,5-diamino-N-(4-aminophenyl)-benzamide monomer and m-phenylenediamine. J Membr Sci 353(1–2):78–84.  https://doi.org/10.1016/j.memsci.2010.02.033 CrossRefGoogle Scholar
  27. 27.
    Hong SP, Kim IC, Tak T, Kwon YN (2013) Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination 309(3):18–26.  https://doi.org/10.1016/j.desal.2012.09.025 CrossRefGoogle Scholar
  28. 28.
    Shen L, Xiong S, Wang Y (2016) Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chem Eng Sci 143:194–205.  https://doi.org/10.1016/j.ces.2015.12.029 CrossRefGoogle Scholar
  29. 29.
    Ali MEA, Hassan FM, Feng X (2016) Improving the performance of TFC membranes via chelation and surface reaction: applications in water desalination. J Mater Chem A 4(17):6620–6629.  https://doi.org/10.1039/c6ta01460g CrossRefGoogle Scholar
  30. 30.
    Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256.  https://doi.org/10.1016/j.memsci.2013.09.014 CrossRefGoogle Scholar
  31. 31.
    Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Membr Sci 405-406:149–157.  https://doi.org/10.1016/j.memsci.2012.03.002 CrossRefGoogle Scholar
  32. 32.
    Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston AG (2013) High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J Am Chem Soc 135(40):15201–15208.  https://doi.org/10.1021/ja407665w CrossRefGoogle Scholar
  33. 33.
    Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membr Sci 328(1–2):257–267.  https://doi.org/10.1016/j.memsci.2008.12.014 CrossRefGoogle Scholar
  34. 34.
    Li X, Loh CH, Wang R, Widjajanti W, Torres J (2017) Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J Membr Sci 525:257–268.  https://doi.org/10.1016/j.memsci.2016.10.051 CrossRefGoogle Scholar
  35. 35.
    Kong C, Shintani T, Kamada T, Freger V, Tsuru T (2011) Co-solvent-mediated synthesis of thin polyamide membranes. J Membr Sci 384(1–2):10–16.  https://doi.org/10.1016/j.memsci.2011.08.055 CrossRefGoogle Scholar
  36. 36.
    Xiang J, Xie Z, Hoang M, Ng D, Zhang K (2014) Effect of ammonium salts on the properties of poly (piperazineamide) thin film composite nanofiltration membrane. J Membr Sci 465:34–40.  https://doi.org/10.1016/j.memsci.2014.03.074 CrossRefGoogle Scholar
  37. 37.
    Mansourpanah Y, Madaeni SS, Rahimpour A (2009) Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J Membr Sci 343(1–2):219–228.  https://doi.org/10.1016/j.memsci.2009.07.033 CrossRefGoogle Scholar
  38. 38.
    Ghosh AK, Jeong B-H, Huang X, Hoek EMV (2008) Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 311(1–2):34–45.  https://doi.org/10.1016/j.memsci.2007.11.038 CrossRefGoogle Scholar
  39. 39.
    Gu JE, Lee S, Stafford CM, Lee JS, Choi W, Kim BY, Baek KY, Chan EP, Chung JY, Bang J, Lee JH (2013) Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv Mater 25(34):4778–4782.  https://doi.org/10.1002/adma.201302030 CrossRefGoogle Scholar
  40. 40.
    An Q, Hung W-S, Lo S-C, Li Y-H, De Guzman M, Hu C-C, Lee K-R, Jean Y-C, Lai J-Y (2012) Comparison between free volume characteristics of composite membranes fabricated through static and dynamic interfacial polymerization processes. Macromolecules 45(8):3428–3435.  https://doi.org/10.1021/ma3001324 CrossRefGoogle Scholar
  41. 41.
    Shen L, Zuo J, Wang Y (2017) Tris(2-aminoethyl) amine in-situ modified thin-film composite membranes for forward osmosis applications. J Membr Sci 537:186–201.  https://doi.org/10.1016/j.memsci.2017.05.035 CrossRefGoogle Scholar
  42. 42.
    Shen L, Wang F, Tian L, Zhang X, Ding C, Wang Y High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. J Membr Sci. 563:284–297.  https://doi.org/10.1016/j.memsci.2018.05.071
  43. 43.
    Wang Y, Li X, Cheng C, He Y, Pan J, Xu T (2016) Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes. J Membr Sci 498:30–38.  https://doi.org/10.1016/j.memsci.2015.09.067 CrossRefGoogle Scholar
  44. 44.
    Akin O, Temelli F (2011) Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination 278(1–3):387–396.  https://doi.org/10.1016/j.desal.2011.05.053 CrossRefGoogle Scholar
  45. 45.
    Klaysom C, Hermans S, Gahlaut A, Van Craenenbroeck S, Vankelecom IFJ (2013) Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: film optimization, characterization and performance evaluation. J Membr Sci 445:25–33.  https://doi.org/10.1016/j.memsci.2013.05.037 CrossRefGoogle Scholar
  46. 46.
    Li X, Wang KY, Helmer B, Chung T-S (2012) Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Ind Eng Chem Res 51(30):10039–10050.  https://doi.org/10.1021/ie2027052 CrossRefGoogle Scholar
  47. 47.
    Saha NK, Joshi SV (2009) Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J Membr Sci 342(1):60–69.  https://doi.org/10.1016/j.memsci.2009.06.025 CrossRefGoogle Scholar
  48. 48.
    Buch PR, Mohan DJ, Reddy AVR (2008) Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes. J Membr Sci 309(1):36–44.  https://doi.org/10.1016/j.memsci.2007.10.004 CrossRefGoogle Scholar
  49. 49.
    Chen H, Hung W, Lo C, Huang S, Cheng M, Liu G, Lee K, Lai J, Sun Y, Chienchieh H (2007) Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40(21):7542–7557CrossRefGoogle Scholar
  50. 50.
    Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. Desalination 242(1):168–182.  https://doi.org/10.1016/j.desal.2008.04.004 CrossRefGoogle Scholar
  51. 51.
    Wu D, Huang Y, Yu S, Lawless D, Feng X (2014) Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. J Membr Sci 472:141–153.  https://doi.org/10.1016/j.memsci.2014.08.055 CrossRefGoogle Scholar
  52. 52.
    Yan F, Chen H, Lü Y, Lü Z, Yu S, Liu M, Gao C (2016) Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J Membr Sci 513:108–116.  https://doi.org/10.1016/j.memsci.2016.04.049 CrossRefGoogle Scholar
  53. 53.
    Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188(1):115–128.  https://doi.org/10.1016/S0376-7388(01)00376-3 CrossRefGoogle Scholar
  54. 54.
    Ramon GZ, Hoek EMV (2013) Transport through composite membranes, part 2: impacts of roughness on permeability and fouling. J Membr Sci 425–426:141–148.  https://doi.org/10.1016/j.memsci.2012.08.004 CrossRefGoogle Scholar
  55. 55.
    Mi B, Elimelech M (2010) Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environ Sci Technol 44(6):2022–2028.  https://doi.org/10.1021/es903623r CrossRefGoogle Scholar
  56. 56.
    Shirazi S, Lin C-J, Chen D (2010) Inorganic fouling of pressure-driven membrane processes—a critical review. Desalination 250(1):236–248.  https://doi.org/10.1016/j.desal.2009.02.056 CrossRefGoogle Scholar
  57. 57.
    Wang Y-N, Järvelä E, Wei J, Zhang M, Kyllönen H, Wang R, Tang CY (2016) Gypsum scaling and membrane integrity of osmotically driven membranes: the effect of membrane materials and operating conditions. Desalination 377:1–10.  https://doi.org/10.1016/j.desal.2015.08.024 CrossRefGoogle Scholar
  58. 58.
    Sahebi S, Phuntsho S, Woo YC, Park MJ, Tijing LD, Hong S, Shon HK (2016) Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane. Desalination 389:129–136.  https://doi.org/10.1016/j.desal.2015.11.028 CrossRefGoogle Scholar
  59. 59.
    Shah AA, H-g C, Nam S-E, Park A, Lee PS, Park Y-I, Park H (2017) Optimization of polysulfone support layer for thin-film composite forward osmosis membrane. Desalin Water Treat 99:155–181.  https://doi.org/10.5004/dwt.2017.21650 CrossRefGoogle Scholar
  60. 60.
    Lu P, Liang S, Qiu L, Gao Y, Wang Q (2016) Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. J Membr Sci 504:196–205.  https://doi.org/10.1016/j.memsci.2015.12.066 CrossRefGoogle Scholar
  61. 61.
    Park MJ, Gonzales RR, Abdel-Wahab A, Phuntsho S, Shon HK (2018) Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426:50–59.  https://doi.org/10.1016/j.desal.2017.10.042 CrossRefGoogle Scholar
  62. 62.
    Zhang X, Tian J, Ren Z, Shi W, Zhang Z, Xu Y, Gao S, Cui F (2016) High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly (arylene ether sulfone) multiblock copolymer/polysulfone substrate. J Membr Sci 520:529–539.  https://doi.org/10.1016/j.memsci.2016.08.005 CrossRefGoogle Scholar
  63. 63.
    Qiu M, Wang J, He C (2018) A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in-situ cross-linked polymerization. Desalination 433:1–9.  https://doi.org/10.1016/j.desal.2018.01.021 CrossRefGoogle Scholar
  64. 64.
    Ghanbari M, Emadzadeh D, Lau WJ, Riazi H, Almasi D, Ismail AF (2016) Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination 377:152–162.  https://doi.org/10.1016/j.desal.2015.09.019 CrossRefGoogle Scholar
  65. 65.
    Shokrollahzadeh S, Tajik S (2018) Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 425:68–76.  https://doi.org/10.1016/j.desal.2017.10.017 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Liang Shen
    • 1
    • 2
  • Lian Tian
    • 1
    • 2
  • Jian Zuo
    • 3
  • Xuan Zhang
    • 1
    • 2
  • Shipeng Sun
    • 4
  • Yan Wang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of EducationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  3. 3.Singapore Institute of technologySingaporeSingapore
  4. 4.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations