Advertisement

Thermodynamics equilibrium analysis on the chemical vapor deposition of HfC as coatings for ceramic matrix composites with HfClx(x = 2–4)-CyHz(CH4, C2H4 and C3H6)-H2-Ar system

  • Juanli DengEmail author
  • Baofu Lu
  • Kaiyue Hu
  • Bohan Zheng
  • Shangwu Fan
  • Laifei Cheng
  • Litong Zhang
Original Research

Abstract

A detailed thermodynamic equilibrium analysis in the chemical vapor deposition of HfC as coatings for ceramic matrix composites with HfClx(x = 2–4)-CyHz(CH4, C2H4 and C3H6)-H2-Ar system has been investigated using the FactSage code. To protect the excellent performance of the composites, we demand a suitable composition and yield of condensed phases. They have been examined as functions of the inject reactant ratios of HfClx/(HfClx + CyHz) and H2/(HfClx + CyHz), temperatures, and pressures. The results show that the HfCl4 species are the optimal Hf-source in the deposition process. The ideal ratio parameters for production of single phase HfC are Log[H2/(HfCl4 + CyHz)] = 2 and Hf/C = 1. And the optimum temperature condition is above 1200 K. A lower pressure of 5 kPa is found to be more favorable for the deposition of a pure HfC phase. The co-deposition of HfC with C or Hf will be easily obtained by only controlling the ratios of HfCl4/(HfCl4 + CyHz) and H2/(HfCl4 + CyHz). The HfCl4-C3H6-H2 precursor system should be the best choice in the experiment due to a higher yield of HfC at the same deposition conditions. The results in this work will be helpful for the further experiment investigation under different deposition conditions and put forward a new idea in exploration of the preparation method of coatings for ceramic matrix composites.

Graphical abstract

Keywords

Hafnium carbide Production of condensed phase Thermodynamics Chemical vapor deposition 

Notes

Funding

The authors would like to acknowledge the financial support of Natural Science Foundation of China (51672218), Shaanxi science and technology research and development projects (2014K08-20), Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory (6142911020106), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU, SKLSP201645), China (Grant No. 145-QZ-2016), and the special fund for basic scientific research of central colleges of Chang’an University (No. 0012-310600161000).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Windhorst T, Blount G (1997) Carbon-carbon composites: a summary of recent developments and applications. Mater Des 18(1):11–15.  https://doi.org/10.1016/s0261-3069(97)00024-1 CrossRefGoogle Scholar
  2. 2.
    Krenkel W, Berndt F (2005) C/C-SiC composites for space applications and advanced friction systems. Mater Sci Eng A 412(1–2):177–181.  https://doi.org/10.1016/j.msea.2005.08.204
  3. 3.
    Yin R, Wu H, Sun K, Li X, Yan C, Zhao W, Guo Z, Qian L (2018) Fabrication of graphene network in alumina ceramics with adjustable negative permittivity by spark plasma sintering. J Phys Chem C 122(3):1791–1799.  https://doi.org/10.1021/acs.jpcc.7b11177 CrossRefGoogle Scholar
  4. 4.
    Deng J, Zheng B, Fan S, Wang X, Zhang L, Cheng L (2017) Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti + Mo. Adv Compos Hybrid Mater 1(1):199–205.  https://doi.org/10.1007/s42114-017-0010-5
  5. 5.
    Krenkel W, Heidenreich B, Renz R (2002) C/C-SiC composites for advanced friction systems. Adv Eng Mater 4(7):427–436.  https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C CrossRefGoogle Scholar
  6. 6.
    Makurunje P, Monteverde F, Sigalas I (2017) Self-generating oxidation protective high-temperature glass-ceramic coatings for Cf/C-SiC-TiC-TaC UHTC matrix composites. J Eur Ceram Soc 37(10):3227–3239.  https://doi.org/10.1016/j.jeurceramsoc.2017.03.068 CrossRefGoogle Scholar
  7. 7.
    Yan Z-Q, Xiong X, Xiao P, Chen F, Zhang H-B, Huang B-Y (2009) Oxidation behavior of oxidation protective coatings for C/C-SiC composites at 1 500 °C. Trans Nonferrous Metals Soc China 19(1):61–64.  https://doi.org/10.1016/S1003-6326(08)60229-0 CrossRefGoogle Scholar
  8. 8.
    Du HY, An YL, Wei YH, Hou LF, Liu BS, Liu H, Ma Y, Zhang JX, Wang N, Umar A, Guo ZH (2018) Nickel powders modified nanocoating strengthened iron plates by surface mechanical attrition alloy and heat treatment. Sci Adv Mater 10(7):1063–1072.  https://doi.org/10.1166/sam.2018.3324 CrossRefGoogle Scholar
  9. 9.
    Terent’eva VS, Zhestkov BE (2009) Multifunctional high-temperature D5 MAI and M1 MAI coatings. Russ J Phys Chem B 3(3):391–396.  https://doi.org/10.1134/S1990793109030087 CrossRefGoogle Scholar
  10. 10.
    Sayir A (2004) Carbon fiber reinforced hafnium carbide composite. J Mater Sci 39(19):5995–6003.  https://doi.org/10.1023/B:JMSC.0000041696.64055.8c CrossRefGoogle Scholar
  11. 11.
    Lewis D, Porter LJ (1970) Plastic deformation in hafnium carbide. J Less-Common Met 22(4):439–444.  https://doi.org/10.1016/0022-5088(70)90131-1 CrossRefGoogle Scholar
  12. 12.
    Lakiza SM, Tyschenko JS, Lopato LM (2011) Phase diagram of the Al2O3–HfO2–Y2O3 system. J Eur Ceram Soc 31(7):1285–1291.  https://doi.org/10.1016/j.jeurceramsoc.2010.04.041 CrossRefGoogle Scholar
  13. 13.
    Deng J, Su K, Wang X, Zeng Q, Cheng L, Xu Y, Zhang L (2009) Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor. Theor Chem Accounts 122(1):1.  https://doi.org/10.1007/s00214-008-0478-8 CrossRefGoogle Scholar
  14. 14.
    Ache HF, Goschnick J, Sommer M, Emig G, Schoch G, Wormer O (1993) Chemical vapour deposition of hafnium carbide and characterization of the deposited layers by secondary-neutral mass spectrometry. Thin Solid Films 241(1):356–360.  https://doi.org/10.1016/0040-6090(94)90457-X CrossRefGoogle Scholar
  15. 15.
    Futamoto M, Yuito I, Kawabe U (1983) Hafnium carbide and nitride whisker growth by chemical vapor deposition. J Cryst Growth 61(1):69–74.  https://doi.org/10.1016/0022-0248(83)90280-4 CrossRefGoogle Scholar
  16. 16.
    Motojima S, Kawashima Y (1996) Chemical vapour growth of HfC whiskers and their morphology. J Mater Sci 31(14):3697–3700.  https://doi.org/10.1007/bf00352782 CrossRefGoogle Scholar
  17. 17.
    Wang Y-L, Xiong X, Li G-D, Zhao X-J, Chen Z-K, Sun W, Wang Z-S (2013) Effect of gas composition on the microstructure and growth behavior of HfC coatings prepared by LPCVD. Solid State Sci 20:86–91.  https://doi.org/10.1016/j.solidstatesciences.2013.02.011 CrossRefGoogle Scholar
  18. 18.
    Wang Y-L, Xiong X, Li G-D, Zhang H-B, Chen Z-K, Sun W, Zhao X-J (2012) Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites. Surf Coat Technol 206(11):2825–2832.  https://doi.org/10.1016/j.surfcoat.2011.12.001 CrossRefGoogle Scholar
  19. 19.
    Wang Y-L, Xiong X, Li G-D, Liu H-F, Chen Z-K, Sun W, Zhao X-J (2012) Ablation behavior of HfC protective coatings for carbon/carbon composites in an oxyacetylene combustion flame. Corros Sci 65:549–555.  https://doi.org/10.1016/j.corsci.2012.08.064 CrossRefGoogle Scholar
  20. 20.
    Wang Y-L, Xiong X, Zhao X-J, Li G-D, Chen Z-K, Sun W (2012) Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment. Corros Sci 61:156–161.  https://doi.org/10.1016/j.corsci.2012.04.033 CrossRefGoogle Scholar
  21. 21.
    Tian S, Li H, Zhang Y, Liu S, Fu Y, Li Y, Qiang X (2013) Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD. J Alloys Compd 580:407–411.  https://doi.org/10.1016/j.jallcom.2013.04.170 CrossRefGoogle Scholar
  22. 22.
    Tian S, Li H, Zhang Y, Zhang S, Wang Y, Ren J, Qiang X (2013) Single-crystalline hafnium carbide nanowire growth below the eutectic temperature by CVD. J Cryst Growth 384:44–49.  https://doi.org/10.1016/j.jcrysgro.2013.09.016 CrossRefGoogle Scholar
  23. 23.
    Verdon C, Szwedek O, Jacques S, Allemand A, Le Petitcorps Y (2013) Hafnium and silicon carbide multilayer coatings for the protection of carbon composites. Surf Coat Technol 230:124–129.  https://doi.org/10.1016/j.surfcoat.2013.06.022 CrossRefGoogle Scholar
  24. 24.
    Wang Y-J, Li H-J, Fu Q-G, Wu H, Yao D-J, Wei B-B (2011) Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch. Appl Surf Sci 257(10):4760–4763.  https://doi.org/10.1016/j.apsusc.2010.11.020 CrossRefGoogle Scholar
  25. 25.
    Xu Y, Yan XT (2010) Chemical vapour deposition. Springer, LondonGoogle Scholar
  26. 26.
    St Martin d Hères, Scientific Group Thermodata Europe (SGTE) (2007) BP 166, 38402, France. https://www.sgte.net/en/
  27. 27.
    Thermfact/CRCT, GTT-Technologies (2006) FactSage 5.4.1 Montreal/Ahn. http://www.factsage.cn/
  28. 28.
    Yao X, Su K, Deng J, Wang X, Zeng Q, Cheng L, Xu Y, Zhang L (2007) Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis. Comput Mater Sci 40(4):504–524.  https://doi.org/10.1016/j.commatsci.2007.02.002 CrossRefGoogle Scholar
  29. 29.
    WANG T, SU K, DENG J, ZENG Y, ZENG Q, CHENG L, ZHANG L (2008) Reaction thermodynamics in chemical vapor deposition of boron carbides with BCl3–C3H6 (propene)-H2 precursors. J Theor Comput Chem 07(06):1269–1312.  https://doi.org/10.1142/s0219633608004532 CrossRefGoogle Scholar
  30. 30.
    Liu QM, Zhang LT, Liu J, Wang YG (2010) Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2. Inorg Mater 46(10):1090–1095.  https://doi.org/10.1134/s0020168510100110 CrossRefGoogle Scholar
  31. 31.
    Liu H, Deng J, Yang L, Cheng L, Luo L, Zhu Y, Su K, Zhang L (2014) Thermodynamics of the production of condensed phases in the chemical vapor deposition of ZrC in the ZrCl4–CH4–H2–Ar system. Thin Solid Films 558:462–467.  https://doi.org/10.1016/j.tsf.2014.03.023 CrossRefGoogle Scholar
  32. 32.
    Deng J, Cheng L, Zheng G, Su K, Zhang L (2012) Thermodynamic study on co-deposition of ZrB2–SiC from ZrCl4–BCl3–CH3SiCl3–H2–Ar system. Thin Solid Films 520(23):7030–7034.  https://doi.org/10.1016/j.tsf.2012.07.105 CrossRefGoogle Scholar
  33. 33.
    Deng J, Cheng L, Hong Z, Su K, Zhang L (2012) Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4–BCl3–H2 precursors. Thin Solid Films 520(6):2331–2335.  https://doi.org/10.1016/j.tsf.2011.10.004 CrossRefGoogle Scholar
  34. 34.
    Deng J, Xie Z, Cheng L, Su K, Zhang L (2014) Thermodynamics of the production of condensed phases in the CVD process of BxC with BCl3-C3H6 (propylene)-H2 precursors. Indian J Eng Mater Sci 21:465–472 doi:http://nopr.niscair.res.in/handle/123456789/29406 Google Scholar
  35. 35.
    Qu Y, Su K, Wang X, Liu Y, Zeng Q, Cheng L, Zhang L (2010) Reaction pathways of propene pyrolysis. J Comput Chem 31(7):1421–1442.  https://doi.org/10.1002/jcc.21427 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juanli Deng
    • 1
    • 2
    • 3
    Email author
  • Baofu Lu
    • 1
  • Kaiyue Hu
    • 1
  • Bohan Zheng
    • 1
  • Shangwu Fan
    • 2
    • 3
  • Laifei Cheng
    • 2
  • Litong Zhang
    • 2
  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China
  2. 2.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  3. 3.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations