Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics

  • 973 Accesses

  • 3 Citations


Piezoelectric hydrogel nanocomposites are being developed as interface for connecting biological organs and electronics because of their flexibility, biocompatibility, and electromechanical behaviours, which allow environmental stimulations to be converted into electronic signals. The vision of this work is to develop a series of piezoelectric hydrogel nanocomposites which is capable of generating electric current in aqueous condition. Conductive nanoparticles have been composited in the PHEMA-based hydrogel. Theoretical models and characterisations on the electromechanical properties of such hydrogel have been investigated to assist the understanding of the piezoelectric mechanisms. The hydrogel nanocomposite was demonstrated as a self-powered motion sensor to quantitatively detect human motion and can be considered as candidate material for soft energy harvesting electronics. Overall, the work presented in this paper provides theoretical basis, design guidelines, and technical support for the development of soft self-powered electronics, thus unlocking the potential of piezoelectric hydrogel nanocomposites.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7


  1. 1.

    Briscoe J, Dunn S (2015) Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy 14:15–29

  2. 2.

    Zhu G, Yang R, Wang S, Wang ZL (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10(8):3151–3155

  3. 3.

    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137

  4. 4.

    Zhao Z, Pu X, Han C, Du C, Li L, Jiang C, Hu W, Wang ZL (2015) Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9(8):8578–8583

  5. 5.

    Ghosh R, Pusty M, Guha PK (2016) Reduced graphene oxide-based piezoelectric nanogenerator with water excitation. IEEE T Nanotechnol 15(2):268–273

  6. 6.

    Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015

  7. 7.

    Annabi N, Tamayol, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

  8. 8.

    Thiele J, Ma Y, Bruekers S, Ma S, Huck WT (2014) 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26:125–148

  9. 9.

    Shi Z, Shi X, Ullah MW, Li S, Revin VV, Yang G (2018) Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv Compos Hybrid Mater 1(1):79–93

  10. 10.

    Abudabbus MM, Jevremović I, Janković A, Perić-Grujić A, Matić I, Vukašinović-Sekulić M, Hui D, Rhee KY, Mišković-Stanković V (2016) Biological activity of electrochemically synthesized silver doped polyvinyl alcohol/graphene composite hydrogel discs for biomedical applications. Compos Part B Eng 104:26–34

  11. 11.

    Majumda P (2014) Modelling and simulation of hydrogel growth mechanism by analysis of experimental data. Chin J Polym Sci 32(3):350–361

  12. 12.

    Dai T, Tang R, Yue X, Xu L, Lu Y (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. Chin J Polym Sci 33(7):1018–1027

  13. 13.

    Ansari R, Pourashraf T, Gholami R, Shahabodini A (2016) Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos Part B Eng 90:267–277

  14. 14.

    Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54

  15. 15.

    Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, Jiang L (2013) Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25:6064–6068

  16. 16.

    Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401

  17. 17.

    Dhiman P, Yavari F, Mi X, Gullapalli H, Shi Y, Ajayan PM, Koratkar N (2011) Harvesting energy from water flow over graphene. Nano Lett 11(8):3123–3127

  18. 18.

    Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, Rice EJ, Chen L, Long R, Wu M (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7:816–820

  19. 19.

    Aqeel SM, Huang Z, Walton J, Baker C, Falkner DL, Liu Z, Wang Z (2017) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1(1):185–192

  20. 20.

    Shi Z, Zhao W, Li S, Yang G (2017) Self-powered hydrogel induced by ion transport. Nano 9:17080–17090

  21. 21.

    Kharismadewi D, Haldorai Y, Nguyen VH, Tuma D, Shim JJ (2016) Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behaviour for the removal of organic dye. Compos Interface 23(7):719–739

  22. 22.

    Massoumi B, Ghandomi F, Abbasian M, Eskandani M, Jaymand M (2016) Surface functionalization of graphene oxide with poly(2-hydroxyethyl methacrylate)-graft-poly(e-caprolactone) and its electrospun nanofibers with gelatin. Appl Phys A Mater Sci Process 122:1000

  23. 23.

    Hao G, Hippauf F, Oschatz M, Wisser FM, Leifert A, Nickel W, Mohamed-Noriega N, Zheng Z, Kaskel S (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8(7):7138–7146

  24. 24.

    Zhao W, Liu C, Wu F, Lenardi C (2014) Investigation on the mechanical behaviour of poly(2-hydroxyethyl methacrylate) hydrogel membrane under compression in the assembly process of microfluidic system. J Polym Sci Polym Phys 52:485–495

  25. 25.

    Huang WF, Tsui CP, Tang CY, Yang M, Gu L (2017) Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos Part B Eng 121:83–91

  26. 26.

    Zhao W, Li X, Gao S, Feng Y, Huang J (2017) Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 24(5):2095–2110

  27. 27.

    Siria A, Poncharal P, Biance A, Fulcrand R, Blasé X, Purcell ST, Bocquet L (2013) Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494:455–458

  28. 28.

    Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324

  29. 29.

    Peppas NA, Benner RE (1980) Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1(3):158–162

  30. 30.

    Zhao W, Shi Z, Chen X, Yang G, Lenardi C, Liu C (2015) Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression. Compos Part B Eng 76:292–299

  31. 31.

    Zhao W, Lenardi C, Webb P, Liu C, Santaniello T, Gassa FA (2013) Methodology to analyse and simulate mechanical characteristics of poly (2-hydroxyethyl methacrylate) hydrogel. Polym Int 62:1059–1067

  32. 32.

    Gao X, Shi Z, Liu C, Yang G, Sevostianov I, Silberschmidt V (2015) Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests. Polym Test 44:82–92

  33. 33.

    Gao X, Sozumert E, Shi Z, Yang G, Silberschmidt V (2017) Assessing stiffness of nanofibres in bacterial cellulose hydrogels: numerical-experimental framework. Mater Sci Eng C 77:9–18

  34. 34.

    Koomson C, Zeltmann SE, Gupta N (2018) Strain rate sensitivity of polycarbonate and vinyl ester from dynamic mechanical analysis experiments. Adv Compos Hybrid Mater.

  35. 35.

    Nava A, Mazza E, Kleinermann F, Avis NJ, McClure J, Bajka M (2004) Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technol Health Care 12(3):269–280

  36. 36.

    Basdogan C Dynamic material properties of human and animal livers. In: Payan Y (ed) Soft tissue biomechanical modelling for computer assisted surgery, Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 11. Springer, Berlin

  37. 37.

    Zhu Y, Chen X, Zhang X, Chen S, Shen Y, Song L (2016) Modelling the mechanical properties of liver fibrosis in rats. J Biomech 49(9):1461–1467

  38. 38.

    Gao X, Shi Z, Lau A, Liu C, Yang G, Silberschmidt V (2016) Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Mater Sci Eng C 62:130–136

  39. 39.

    Chang ZY, Yan WY, Shang J, Liu JZ (2014) Piezoelectric properties of graphene oxide: a first-principles computational study. Appl Phys Lett 105:023103

  40. 40.

    Alamusi XJM, Wu LK, Hu N, Qiu JH, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu YL, Ning HM, Li JH, Li Y, Zhao YH (2012) Evaluation of piezoelectric property of reduced graphene oxide (rGO)-poly(vinylidene fluoride) nanocomposites. Nano 4:7250–7255

  41. 41.

    Cooper D, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V (2012) Experimental review of graphene. ISRN condensed matter. Physics:501686.

  42. 42.

    Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sensors Actuators B Chem 207:690–715

  43. 43.

    Kwon YJ, Kim Y, Jeon H, Cho S, Lee W, Lee JU (2017) Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos Part B Eng 122:23–30

  44. 44.

    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

  45. 45.

    Yun S, Kim J (2011) Mechanical, electrical, piezoelectric and electro-active behaviour of aligned multi-walled carbon nanotube/cellulose composites. Carbon 49:518–527

  46. 46.

    Tarfaoui M, Lafdi K, Moumen AE (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos Part B Eng 103:113–121

  47. 47.

    Martínez MT, Tseng YC, Ormategui N, Loinaz I, Eritja R, Bokor J (2009) Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 9(2):530–536

Download references


The project was supported by the National Natural Science Foundation of China (51703176, 51603079), the Fundamental Research Funds for the Central Universities (WUT2017IVA015, HUST2014XJGH009, WUT2016III035), and the Science and Technology Support Plan in Jiangsu Province of China (BE2014684). The authors wish to thank the Hubei Digital Manufacturing Key Laboratory at the WUT for performing characterisation of various samples.

Author information

Correspondence to Guang Yang or Huifang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

(MP4 550 kb)


(DOCX 806 kb)


(MP4 550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Shi, Z., Hu, S. et al. Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics. Adv Compos Hybrid Mater 1, 320–331 (2018) doi:10.1007/s42114-018-0036-3

Download citation


  • Piezoelectricity
  • PHEMA-based hydrogel
  • Nanocomposites
  • Self-powered sensor