Advertisement

Advanced Composites and Hybrid Materials

, Volume 1, Issue 1, pp 56–78 | Cite as

Carbon nanotubes, graphene, and their derivatives for heavy metal removal

  • Guoqiang Yu
  • Yang Lu
  • Jiang Guo
  • Manisha Patel
  • Adarsh Bafana
  • Xifan Wang
  • Bin Qiu
  • Clayton Jeffryes
  • Suying WeiEmail author
  • Zhanhu GuoEmail author
  • Evan K. WujcikEmail author
Review

Abstract

Carbon nanoadsorbents have attracted tremendous interest for metal ion removal from wastewater due to their extraordinary aspect ratios, surface areas, porosities, and reactivities. However, challenges still exist as they suffer from subpar dispersion and recovery, tending to aggregate, and so on. Thus, significant research efforts focus on modification of these carbon nanomaterials to increase the dispersions and recoveries, while maintaining or even enhancing the desirable properties. This review aims to give an in-depth look at recent and impactful advances in metal ion adsorption applications involving these modified carbon nanostructures. Here, the advanced design and testing of modified carbon nanostructures for metal ion removal are emphasized with comprehensive examples, and various adsorption behaviors and mechanisms are discussed, which are hoped to help the development of more effective adsorbents for water treatment.

Keywords

Carbon nanoadsorbents Heavy metals Water treatment Modification methods Adsorption behaviors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503.  https://doi.org/10.1016/j.jhazmat.2014.08.029 CrossRefGoogle Scholar
  2. 2.
    Wujcik EK, Londono NJ, Duirk SE, Monty CN, Masel RI (2013) An acetylcholinesterase-inspired biomimetic toxicity sensor. Chemosphere 91(8):1176–1182.  https://doi.org/10.1016/j.chemosphere.2013.01.027 CrossRefGoogle Scholar
  3. 3.
    Wujcik EK, Duirk SE, Chase GG, Monty CN (2016) A visible colorimetric sensor based on nanoporous polypropylene fiber membranes for the determination of trihalomethanes in treated drinking water. Sensors Actuators B Chem 223:1–8.  https://doi.org/10.1016/j.snb.2015.09.004 CrossRefGoogle Scholar
  4. 4.
    Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, Kizek R (2014) Interaction of heavy metal ions with carbon and iron based particles. Materials 7(3):2242–2256.  https://doi.org/10.3390/ma7032242 CrossRefGoogle Scholar
  5. 5.
    Olanipekun O, Oyefusi A, Neelgund GM, Oki A (2014) Adsorption of lead over graphite oxide. Spectrochim Acta A Mol Biomol Spectrosc 118:857–860.  https://doi.org/10.1016/j.saa.2013.09.088 CrossRefGoogle Scholar
  6. 6.
    Shirani M, Semnani A, Habibollahi S, Haddadi H (2015) Ultrasound-assisted, ionic liquid-linked, dual-magnetic multiwall carbon nanotube microextraction combined with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium and arsenic in food samples. J Anal At Spectrom 30(5):1057–1063.  https://doi.org/10.1039/c4ja00481g CrossRefGoogle Scholar
  7. 7.
    Aceto SR, Lu Y, Narayanan R, Heskett D, Wujcik EK, Bose A (2017) Hexagonally patterned mixed surfactant-templated room temperature synthesis of titania-lead selenide nanocomposites. Adv Compos & Hy Matls (in press)Google Scholar
  8. 8.
    Sharma A, Sharma A, Arya RK (2014) Removal of mercury(II) from aqueous solution: a review of recent work. Sep Sci Technol 50(9):1310–1320.  https://doi.org/10.1080/01496395.2014.968261 CrossRefGoogle Scholar
  9. 9.
    National Primary Drinking Water Regulations (2017) United States Environmental Protection Agency. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 17 May 2017
  10. 10.
    Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985.  https://doi.org/10.1021/es2014133 CrossRefGoogle Scholar
  11. 11.
    Imamoglu M, Tekir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228(1–3):108–113.  https://doi.org/10.1016/j.desal.2007.08.011 CrossRefGoogle Scholar
  12. 12.
    Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102(2–3):257–275.  https://doi.org/10.1016/s0304-3894(03)00209-7 CrossRefGoogle Scholar
  13. 13.
    Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106.  https://doi.org/10.1016/j.chemosphere.2004.03.006 CrossRefGoogle Scholar
  14. 14.
    Modrzejewska Z, Kaminski W (1999) Separation of Cr(VI) on chitosan membranes. Ind Eng Chem Res 38:4946–4950.  https://doi.org/10.1021/ie980612g CrossRefGoogle Scholar
  15. 15.
    Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110CrossRefGoogle Scholar
  16. 16.
    Kongsricharoern N, Polprasert C (1996) Chromium removal by a bipolar electro-chemical precipitation process. Wat Sci Tech 34(9):109–116Google Scholar
  17. 17.
    Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39(4):610–616.  https://doi.org/10.1016/j.watres.2004.10.011 CrossRefGoogle Scholar
  18. 18.
    Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238:302–311.  https://doi.org/10.1016/j.desal.200 CrossRefGoogle Scholar
  19. 19.
    Mohsen-Nia M, Montazeri P, Modarress H (2007) Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217(1–3):276–281.  https://doi.org/10.1016/j.desal.2006.01.043 CrossRefGoogle Scholar
  20. 20.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418.  https://doi.org/10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  21. 21.
    Karbassi AR, Ayaz GO (2007) Flocculation of Cu, Zn, Pb, Ni and Mn during mixing of Talar River water with Caspian seawater. Int J Environ Res 1(1):66–73Google Scholar
  22. 22.
    Kumar R, Chawla J, Kaur I (2015) Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review. J Water Health 13(1):18–33.  https://doi.org/10.2166/wh.2014.024 CrossRefGoogle Scholar
  23. 23.
    Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482.  https://doi.org/10.1007/s11783-014-0654-0 CrossRefGoogle Scholar
  24. 24.
    Wu Y, Ma X, Feng M, Liu M (2008) Behavior of chromium and arsenic on activated carbon. J Hazard Mater 159(2–3):380–384.  https://doi.org/10.1016/j.jhazmat.2008.02.059 CrossRefGoogle Scholar
  25. 25.
    Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42(16):5682–5689.  https://doi.org/10.1039/c3dt33097d CrossRefGoogle Scholar
  26. 26.
    Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331.  https://doi.org/10.1016/j.jhazmat.2011.10.016 CrossRefGoogle Scholar
  27. 27.
    Zhang G-S, Qu J-H, Liu H-J, Liu R-P, Li G-T (2007) Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619.  https://doi.org/10.1021/es063010u CrossRefGoogle Scholar
  28. 28.
    Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37(7):1619–1627.  https://doi.org/10.1016/s0043-1354(02)00524-9 CrossRefGoogle Scholar
  29. 29.
    Manohar DM, Krishnan KA, Anirudhan TS (2002) Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res 36:1609–1619CrossRefGoogle Scholar
  30. 30.
    Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38(17):3699–3704.  https://doi.org/10.1016/j.watres.2004.06.008 CrossRefGoogle Scholar
  31. 31.
    Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314.  https://doi.org/10.1016/j.jcis.2004.08.028 CrossRefGoogle Scholar
  32. 32.
    Hsu LC, Wang SL, Lin YC, Wang MK, Chiang PN, Liu JC, Kuan WH, Chen CC, Tzou YM (2010) Cr(VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic carbons derived from the biomass to Cr(VI) reduction. Environ Sci Technol 44:6202–6208.  https://doi.org/10.1021/es1017015 CrossRefGoogle Scholar
  33. 33.
    Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552.  https://doi.org/10.1016/s0043-1354(03)00415-9 CrossRefGoogle Scholar
  34. 34.
    Gu H, Rapole SB, Sharma J, Huang Y, Cao D, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Walters B, Wei S, Guo Z (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2(29):11007–11018.  https://doi.org/10.1039/c2ra21991c CrossRefGoogle Scholar
  35. 35.
    Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2(8):2070–2080.  https://doi.org/10.1021/sc5003209 CrossRefGoogle Scholar
  36. 36.
    Khan MA, Gee E, Choi J, Kumar M, Jung W, Timmes TC, Kim H-C, Jeon B-H (2013) Adsorption of cobalt onto graphite nanocarbon-impregnated alginate beads: equilibrium, kinetics, and thermodynamics studies. Chem Eng Commun 201(3):403–418.  https://doi.org/10.1080/00986445.2013.773426 CrossRefGoogle Scholar
  37. 37.
    Qu J, Zhang Q, Xia Y, Cong Q, Luo C (2015) Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them. Environ Sci Pollut Res Int 22(2):1408–1419.  https://doi.org/10.1007/s11356-014-3447-x CrossRefGoogle Scholar
  38. 38.
    Chen B, Ma Q, Tan C, Lim TT, Huang L, Zhang H (2015) Carbon-based sorbents with three-dimensional architectures for water remediation. Small 11(27):3319–3336.  https://doi.org/10.1002/smll.201403729 CrossRefGoogle Scholar
  39. 39.
    Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49(1):67–84.  https://doi.org/10.1021/es504421y CrossRefGoogle Scholar
  40. 40.
    Alijani H, Beyki MH, Shariatinia Z, Bayat M, Shemirani F (2014) A new approach for one step synthesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: application for removal of lead ions. Chem Eng J 253:456–463.  https://doi.org/10.1016/j.cej.2014.05.021 CrossRefGoogle Scholar
  41. 41.
    Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5(38):29885–29907.  https://doi.org/10.1039/c5ra02714d CrossRefGoogle Scholar
  42. 42.
    Khan MA, Jung W, Kwon O-H, Jung YM, Paeng K-J, Cho S-Y, Jeon B-H (2014) Sorption studies of manganese and cobalt from aqueous phase onto alginate beads and nano-graphite encapsulated alginate beads. J Ind Eng Chem 20(6):4353–4362.  https://doi.org/10.1016/j.jiec.2014.01.043 CrossRefGoogle Scholar
  43. 43.
    Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A, Pooladi M (2014) Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim Acta 181(5–6):597–605.  https://doi.org/10.1007/s00604-013-1154-9 CrossRefGoogle Scholar
  44. 44.
    Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interf Sci 204:35–56.  https://doi.org/10.1016/j.cis.2013.12.005 CrossRefGoogle Scholar
  45. 45.
    Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang ST, Luo J (2015) Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater 286:449–456.  https://doi.org/10.1016/j.jhazmat.2015.01.021 CrossRefGoogle Scholar
  46. 46.
    Lei Y, Chen F, Luo Y, Zhang L (2014) Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. Chem Phys Lett 593:122–127.  https://doi.org/10.1016/j.cplett.2013.12.066 CrossRefGoogle Scholar
  47. 47.
    Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399.  https://doi.org/10.1007/s00216-013-7302-6 CrossRefGoogle Scholar
  48. 48.
    Lan Y, Liu H, Cao X, Zhao S, Dai K, Yan X, Zheng G, Liu C, Shen C, Guo Z (2016) Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97:11–19.  https://doi.org/10.1016/j.polymer.2016.05.017 CrossRefGoogle Scholar
  49. 49.
    Yan L, Zhao Q, Jiang T, Liu X, Li Y, Fang W, Yin H (2015) Adsorption characteristics and behavior of a graphene oxide-Al13 composite for cadmium ion removal from aqueous solutions. RSC Adv 5(83):67372–67379.  https://doi.org/10.1039/c5ra10174c CrossRefGoogle Scholar
  50. 50.
    Zhu J, Chen M, Qu H, Luo Z, Wu S, Colorado HA, Wei S, Guo Z (2013) Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ Sci 6(1):194–204.  https://doi.org/10.1039/c2ee23422j CrossRefGoogle Scholar
  51. 51.
    Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5(1):73–83.  https://doi.org/10.1039/c6tc03713e CrossRefGoogle Scholar
  52. 52.
    Xu T, Chen L, Guo Z, Ma T (2016) Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys 18(39):27026–27050.  https://doi.org/10.1039/c6cp04553g CrossRefGoogle Scholar
  53. 53.
    Wei H, Gu H, Guo J, Yan X, Liu J, Cao D, Wang X, Wei S, Guo Z (2017) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos & Hy Matls (in press)Google Scholar
  54. 54.
    Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nano 8(26):12977–12989.  https://doi.org/10.1039/C6NR02216B Google Scholar
  55. 55.
    Aliyari E, Alvand M, Shemirani F (2015) Simultaneous separation and preconcentration of lead and cadmium from water and vegetable samples using a diethylenetriamine-modified magnetic graphene oxide nanocomposite. Anal Methods 7(18):7582–7589.  https://doi.org/10.1039/c5ay01088h CrossRefGoogle Scholar
  56. 56.
    Gu Y, Sun Y, Zhang Y, Chi H, Zhang W, Liang Q, Jing R (2014) Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett 6(1):80–87.  https://doi.org/10.1007/bf03353772 CrossRefGoogle Scholar
  57. 57.
    Dong Z, Wang D, Liu X, Pei X, Chen L, Jin J (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2(14):5034–5040.  https://doi.org/10.1039/c3ta14751g CrossRefGoogle Scholar
  58. 58.
    Gopalakrishnan A, Krishnan R, Thangavel S, Venugopal G, Kim S-J (2015) Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. J Ind Eng Chem 30:14–19.  https://doi.org/10.1016/j.jiec.2015.06.005 CrossRefGoogle Scholar
  59. 59.
    Li L, Wang Z, Ma P, Bai H, Dong W, Chen M (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22(8):150.  https://doi.org/10.1007/s10965-015-0794-3 CrossRefGoogle Scholar
  60. 60.
    Jiang T, Yan L, Zhang L, Li Y, Zhao Q, Yin H (2015) Fabrication of a novel graphene oxide/β-FeOOH composite and its adsorption behavior for copper ions from aqueous solution. Dalton Trans 44(22):10448–10456.  https://doi.org/10.1039/c5dt01030f CrossRefGoogle Scholar
  61. 61.
    Olanipekun O, Oyefusi A, Neelgund GM, Oki A (2015) Synthesis and characterization of reduced graphite oxide-polymer composites and their application in adsorption of lead. Spectrochim Acta A Mol Biomol Spectrosc 149:991–996.  https://doi.org/10.1016/j.saa.2015.04.071 CrossRefGoogle Scholar
  62. 62.
    Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4(80):42346–42357.  https://doi.org/10.1039/c4ra07114j CrossRefGoogle Scholar
  63. 63.
    Ding Z, Hu X, Morales VL, Gao B (2014) Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chem Eng J 257:248–252.  https://doi.org/10.1016/j.cej.2014.07.034 CrossRefGoogle Scholar
  64. 64.
    Gu D, Fein JB (2015) Adsorption of metals onto graphene oxide: surface complexation modeling and linear free energy relationships. Colloids Surf A Physicochem Eng Asp 481:319–327.  https://doi.org/10.1016/j.colsurfa.2015.05.026 CrossRefGoogle Scholar
  65. 65.
    Dong Z, Zhang F, Wang D, Liu X, Jin J (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93.  https://doi.org/10.1016/j.jssc.2014.06.030 CrossRefGoogle Scholar
  66. 66.
    Deng D, Jiang X, Yang L, Hou X, Zheng C (2014) Organic solvent-free cloud point extraction-like methodology using aggregation of graphene oxide. Anal Chem 86(1):758–765.  https://doi.org/10.1021/ac403345s CrossRefGoogle Scholar
  67. 67.
    Xu Z, Zhang Y, Qian X, Shi J, Chen L, Li B, Niu J, Liu L (2014) One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Appl Surf Sci 316:308–314.  https://doi.org/10.1016/j.apsusc.2014.07.155 CrossRefGoogle Scholar
  68. 68.
    Santhana KKA, Jiang S-J (2015) Preparation and characterization of exfoliated graphene oxide-L-cystine as an effective adsorbent of Hg(II) adsorption. RSC Adv 5(9):6294–6304.  https://doi.org/10.1039/c4ra12564a CrossRefGoogle Scholar
  69. 69.
    Wen T, Wu X, Liu M, Xing Z, Wang X, Xu AW (2014) Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites. Dalton Trans 43(20):7464–7472.  https://doi.org/10.1039/c3dt53591f CrossRefGoogle Scholar
  70. 70.
    Yang J, Wu J-X, Lü Q-F, Lin T-T (2014) Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain Chem Eng 2(5):1203–1211.  https://doi.org/10.1021/sc500030v CrossRefGoogle Scholar
  71. 71.
    Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS (2013) Removal of heavy metals from wastewater using carbon nanotubes. Separation & Purification Reviews 43(4):311–338.  https://doi.org/10.1080/15422119.2013.821996 CrossRefGoogle Scholar
  72. 72.
    Ensafi AA, Jokar M, Ghiaci M (2014) Modified multiwall carbon nanotubes supported on graphite as a suitable solid nano-sorbent for selective separation and preconcentration of trace amounts of cadmium and lead ions. J Iran Chem Soc 12(3):457–467.  https://doi.org/10.1007/s13738-014-0503-x CrossRefGoogle Scholar
  73. 73.
    Anitha K, Namsani S, Singh JK (2015) Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J Phys Chem A 119(30):8349–8358.  https://doi.org/10.1021/acs.jpca.5b03352 CrossRefGoogle Scholar
  74. 74.
    Zhou Q, Xing A, Zhao K (2014) Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography. J Chromatogr A 1360:76–81.  https://doi.org/10.1016/j.chroma.2014.07.084 CrossRefGoogle Scholar
  75. 75.
    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F, Wei Y (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19–27.  https://doi.org/10.1016/j.apsusc.2015.03.081 CrossRefGoogle Scholar
  76. 76.
    Shaheen HA, Marwani HM, Soliman EM (2015) Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. J Mol Liq 212:480–486.  https://doi.org/10.1016/j.molliq.2015.09.040 CrossRefGoogle Scholar
  77. 77.
    Ihsanullah, Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Laoui T, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq 204:255–263.  https://doi.org/10.1016/j.molliq.2015.01.033 CrossRefGoogle Scholar
  78. 78.
    Cai YQ, Yu GQ, Liu CD, Xu YY, Wang W (2012) Imidazolium ionic liquid-supported sulfonic acids: efficient and recyclable catalysts for esterification of benzoic acid. Chin Chem Lett 23(1):1–4.  https://doi.org/10.1016/j.cclet.2011.09.016 CrossRefGoogle Scholar
  79. 79.
    Chawla J, Kumar R, Kaur I (2015) Carbon nanotubes and graphenes as adsorbents for adsorption of lead ions from water: a review. J Water Supply Res Technol AQUA 64(6):641–659.  https://doi.org/10.2166/aqua.2015.102 CrossRefGoogle Scholar
  80. 80.
    Wujcik EK, Monty CN (2013) Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):233–249.  https://doi.org/10.1002/wnan.1213 CrossRefGoogle Scholar
  81. 81.
    Aqeel SM, Huanga Z, Walton J, Baker C, Falkner D, Liu Z, Wang Z (2017) Advanced functional polyvinylidene fluoride (PVDF)/polyacrilonitrile (PAN) organic semiconductor assisted by aligned nanocarbon toward energy storage and conversion. Adv Compos & Hy Matls (in press)Google Scholar
  82. 82.
    Zhan C, Yu G, Lu Y, Wang L, Wujcik E, Wei S (2017) Conductive polymer nanocomposites: a critical review of modern advanced devices. J Mater Chem C 5(7):1569–1585.  https://doi.org/10.1039/c6tc04269d CrossRefGoogle Scholar
  83. 83.
    Blasdel NJ, Wujcik EK, Carletta JE, Lee K-S, Monty CN (2015) Fabric nanocomposite resistance temperature detector. IEEE Sensors J 15(1):300–306.  https://doi.org/10.1109/jsen.2014.2341915 CrossRefGoogle Scholar
  84. 84.
    Ge Y, Li Z, Xiao D, Xiong P, Ye N (2014) Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J Ind Eng Chem 20(4):1765–1771.  https://doi.org/10.1016/j.jiec.2013.08.030 CrossRefGoogle Scholar
  85. 85.
    Nekouei S, Nekouei F (2014) Application of multiwalled carbon nanotubes modified by diethyl dithiophosphate ammonium for selective solid phase extraction of ultra traces Ni(II) and Co(II) in river water samples. Studia UBB Chemia 59(3):49–59Google Scholar
  86. 86.
    Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20.  https://doi.org/10.1016/j.apsusc.2014.08.182 CrossRefGoogle Scholar
  87. 87.
    Tian Z, Yang B, Cui G, Zhang L, Guo Y, Yan S (2015) Synthesis of poly(m-phenylenediamine)/iron oxide/acid oxidized multi-wall carbon nanotubes for removal of hexavalent chromium. RSC Adv 5(3):2266–2275.  https://doi.org/10.1039/c4ra10282g CrossRefGoogle Scholar
  88. 88.
    Wang Y, Shi L, Gao L, Wei Q, Cui L, Hu L, Yan L, Du B (2015) The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J Colloid Interface Sci 451:7–14.  https://doi.org/10.1016/j.jcis.2015.03.048 CrossRefGoogle Scholar
  89. 89.
    Wang Y, Wei H, Lu Y, Wei S, Wujcik E, Guo Z (2015) Multifunctional carbon nanostructures for advanced energy storage applications. Nano 5(2):755–777.  https://doi.org/10.3390/nano5020755 Google Scholar
  90. 90.
    Sharma J, Lizu M, Stewart M, Zygula K, Lu Y, Chauhan R, Yan X, Guo Z, Wujcik E, Wei S (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7(2):186–219.  https://doi.org/10.3390/polym7020186 CrossRefGoogle Scholar
  91. 91.
    Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5):654–677.  https://doi.org/10.1002/wnan.1391 CrossRefGoogle Scholar
  92. 92.
    Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528.  https://doi.org/10.1039/c3ta12390a CrossRefGoogle Scholar
  93. 93.
    Zhu J, Gu H, Guo J, Chen M, Wei H, Luo Z, Colorado HA, Yerra N, Ding D, Ho TC, Haldolaarachchige N, Hopper J, Young DP, Guo Z, Wei S (2014) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J Mater Chem A 2(7):2256–2265.  https://doi.org/10.1039/c3ta13957c CrossRefGoogle Scholar
  94. 94.
    Zhang X, Liu J, Kelly SJ, Huang X, Liu J (2014) Biomimetic snowflake-shaped magnetic micro−/nanostructures for highly efficient adsorption of heavy metal ions and organic pollutants from aqueous solution. J Mater Chem A 2:11759–11767.  https://doi.org/10.1039/c4ta02058h CrossRefGoogle Scholar
  95. 95.
    Qiu B, Gu H, Yan X, Guo J, Wang Y, Sun D, Wang Q, Khan M, Zhang X, Weeks BL, Young DP, Guo Z, Wei S (2014) Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. J Mater Chem A 2(41):17454–17462.  https://doi.org/10.1039/c4ta04040f CrossRefGoogle Scholar
  96. 96.
    Han C, Ma Q, Yang Y, Yang M, Yu W, Dong X, Wang J, Liu G (2015) Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality. J Mater Sci Mater Electron 26(10):8054–8064.  https://doi.org/10.1007/s10854-015-3463-8 CrossRefGoogle Scholar
  97. 97.
    Cui HJ, Cai JK, Zhao H, Yuan B, Ai C, Fu ML (2014) One step solvothermal synthesis of functional hybrid γ-Fe2O3/carbon hollow spheres with superior capacities for heavy metal removal. J Colloid Interface Sci 425:131–135.  https://doi.org/10.1016/j.jcis.2014.03.049 CrossRefGoogle Scholar
  98. 98.
    Mamun AA, Ahmed YM, AlKhatib MFR, Jameel AT, AlSaadi MAHAR (2015) Lead sorption by carbon nanofibers grown on powdered activated carbon—kinetics and equilibrium. NANO: Brief Reports and Reviews 10(2):1550017.  https://doi.org/10.1142/s1793292015500174 CrossRefGoogle Scholar
  99. 99.
    Dinda D, Saha SK (2015) Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI). J Hazard Mater 291:93–101.  https://doi.org/10.1016/j.jhazmat.2015.02.065 CrossRefGoogle Scholar
  100. 100.
    Chella S, Kollu P, Komarala EVPR, Doshi S, Saranya M, Felix S, Ramachandran R, Saravanan P, Koneru VL, Venugopal V, Jeong SK, Grace AN (2015) Solvothermal synthesis of MnFe2O4-graphene composite—investigation of its adsorption and antimicrobial properties. Appl Surf Sci 327:27–36.  https://doi.org/10.1016/j.apsusc.2014.11.096 CrossRefGoogle Scholar
  101. 101.
    Gao H, Lv S, Dou J, Kong M, Dai D, Si C, Liu G (2015) The efficient adsorption removal of Cr(VI) by using Fe3O4 nanoparticles hybridized with carbonaceous materials. RSC Adv 5(74):60033–60040.  https://doi.org/10.1039/c5ra10236g CrossRefGoogle Scholar
  102. 102.
    Muthukrishnaraj A, Manokaran J, Vanitha M, Thiruvengadaravi KV, Baskaralingam P, Balasubramanian N (2014) Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite. Desalin Water Treat 56(9):2485–2501.  https://doi.org/10.1080/19443994.2014.963149 CrossRefGoogle Scholar
  103. 103.
    Santhosh C, Kollu P, Felix S, Velmurugan V, Jeong SK, Grace AN (2015) CoFe2O4 and NiFe2O4@graphene adsorbents for heavy metal ions—kinetic and thermodynamic analysis. RSC Adv 5(37):28965–28972.  https://doi.org/10.1039/c5ra02905h CrossRefGoogle Scholar
  104. 104.
    Zhang Y, Yan T, Yan L, Guo X, Cui L, Wei Q, Du B (2014) Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. J Mol Liq 198:381–387.  https://doi.org/10.1016/j.molliq.2014.07.043 CrossRefGoogle Scholar
  105. 105.
    Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W (2014) Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J Hazard Mater 278:211–220.  https://doi.org/10.1016/j.jhazmat.2014.05.075 CrossRefGoogle Scholar
  106. 106.
    Sahoo AK, Srivastava SK, Raul PK, Gupta AK, Shrivastava R (2014) Graphene nanocomposites of CdS and ZnS in effective water purification. J Nanopart Res 16(7):2473.  https://doi.org/10.1007/s11051-014-2473-4 CrossRefGoogle Scholar
  107. 107.
    Santhosh C, Kollu P, Doshi S, Sharma M, Bahadur D, Vanchinathan MT, Saravanan P, Kim B-S, Grace AN (2014) Adsorption, photodegradation and antibacterial study of graphene-Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4(54):28300–28308.  https://doi.org/10.1039/c4ra02913e CrossRefGoogle Scholar
  108. 108.
    Li J, Chen C, Zhu K, Wang X (2016) Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. J Taiwan Inst Chem Eng 59:389–394.  https://doi.org/10.1016/j.jtice.2015.09.010 CrossRefGoogle Scholar
  109. 109.
    Li J, Chen C, Zhang R, Wang X (2015) Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions. Chem Asian J 10(6):1410–1417.  https://doi.org/10.1002/asia.201500242 CrossRefGoogle Scholar
  110. 110.
    Zhou G, Xu X, Zhu W, Feng B, Hu J (2015) Dispersedly embedded loading of Fe3O4 nanoparticles into graphene nanosheets for highly efficient and recyclable removal of heavy metal ions. New J Chem 39(9):7355–7362.  https://doi.org/10.1039/c5nj00897b CrossRefGoogle Scholar
  111. 111.
    Zhang L, Tian Y, Guo Y, Gao H, Li H, Yan S (2015) Introduction of α-MnO2 nanosheets to NH2 graphene to remove Cr6+ from aqueous solutions. RSC Adv 5(55):44096–44106.  https://doi.org/10.1039/c5ra04545b CrossRefGoogle Scholar
  112. 112.
    Yang L, Li Z, Nie G, Zhang Z, Lu X, Wang C (2014) Fabrication of poly(o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions. Appl Surf Sci 307:601–607.  https://doi.org/10.1016/j.apsusc.2014.04.083 CrossRefGoogle Scholar
  113. 113.
    Zhang Y, Yan L, Xu W, Guo X, Cui L, Gao L, Wei Q, Du B (2014) Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq 191:177–182.  https://doi.org/10.1016/j.molliq.2013.12.015 CrossRefGoogle Scholar
  114. 114.
    Tayyebi A, Outokesh M, Moradi S, Doram A (2015) Synthesis and characterization of ultrasound assisted “graphene oxide-magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. Appl Surf Sci 353:350–362.  https://doi.org/10.1016/j.apsusc.2015.06.087 CrossRefGoogle Scholar
  115. 115.
    Zhao Z, Li J, Wen T, Shen C, Wang X, Xu A (2015) Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids Surf A Physicochem Eng Asp 482:258–266.  https://doi.org/10.1016/j.colsurfa.2015.05.020 CrossRefGoogle Scholar
  116. 116.
    Ma S, Zhan S, Jia Y, Zhou Q (2015) Highly efficient antibacterial and Pb(II) removal effects of Ag-CoFe2O4-GO nanocomposite. ACS Appl Mater Interfaces 7(19):10576–10586.  https://doi.org/10.1021/acsami.5b02209 CrossRefGoogle Scholar
  117. 117.
    Tan M, Liu X, Li W, Li H (2015) Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide. J Chem Eng Data 60(5):1469–1475.  https://doi.org/10.1021/acs.jced.5b00015 CrossRefGoogle Scholar
  118. 118.
    Zhang F, Song Y, Song S, Zhang R, Hou W (2015) Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces 7(13):7251–7263.  https://doi.org/10.1021/acsami.5b00433 CrossRefGoogle Scholar
  119. 119.
    Xing HT, Chen JH, Sun X, Huang YH, Su ZB, Hu SR, Weng W, Li SX, Guo HX, Wu WB, He YS, Li FM, Huang Y (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of cu(II) from aqueous solution. Chem Eng J 263:280–289.  https://doi.org/10.1016/j.cej.2014.10.111 CrossRefGoogle Scholar
  120. 120.
    Verma S, Dutta RK (2015) A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv 5(94):77192–77203.  https://doi.org/10.1039/c5ra10555b CrossRefGoogle Scholar
  121. 121.
    Liu Y, Luo C, Cui G, Yan S (2015) Synthesis of manganese dioxide/iron oxide/graphene oxide magnetic nanocomposites for hexavalent chromium removal. RSC Adv 5(67):54156–54164.  https://doi.org/10.1039/c5ra06455d CrossRefGoogle Scholar
  122. 122.
    Najafabadi HH, Irani M, Rad RL, Haratameh HA, Haririan I (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5(21):16532–16539.  https://doi.org/10.1039/c5ra01500f CrossRefGoogle Scholar
  123. 123.
    Cui L, Wang Y, Hu L, Gao L, Du B, Wei Q (2015) Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv 5(13):9759–9770.  https://doi.org/10.1039/c4ra13009j CrossRefGoogle Scholar
  124. 124.
    Sui N, Wang L, Wu X, Li X, Sui J, Xiao H, Liu M, Wan J, Yu WW (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv 5(1):746–752.  https://doi.org/10.1039/c4ra11669k CrossRefGoogle Scholar
  125. 125.
    Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) New double network hydrogel adsorbent: highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chem Eng J 275:179–188.  https://doi.org/10.1016/j.cej.2015.04.040 CrossRefGoogle Scholar
  126. 126.
    Jiang T, Liu W, Mao Y, Zhang L, Cheng J, Gong M, Zhao H, Dai L, Zhang S, Zhao Q (2015) Adsorption behavior of copper ions from aqueous solution onto graphene oxide-CdS composite. Chem Eng J 259:603–610.  https://doi.org/10.1016/j.cej.2014.08.022 CrossRefGoogle Scholar
  127. 127.
    Sitko R, Janik P, Feist B, Talik E, Gagor A (2014) Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. ACS Appl Mater Interfaces 6(22):20144–20153.  https://doi.org/10.1021/am505740d CrossRefGoogle Scholar
  128. 128.
    Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MA, Sood AK (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6(20):17426–17436.  https://doi.org/10.1021/am504826q CrossRefGoogle Scholar
  129. 129.
    Jia W, Lu S (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean J Chem Eng 31(7):1265–1270.  https://doi.org/10.1007/s11814-014-0045-z CrossRefGoogle Scholar
  130. 130.
    Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49(12):4236–4245.  https://doi.org/10.1007/s10853-014-8118-2 CrossRefGoogle Scholar
  131. 131.
    Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10.  https://doi.org/10.1016/j.jhazmat.2014.01.031 CrossRefGoogle Scholar
  132. 132.
    Li H, Chi Z, Li J (2013) Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(III) removal. Desalin Water Treat 52(10–12):1937–1946.  https://doi.org/10.1080/19443994.2013.806224 Google Scholar
  133. 133.
    Chen JH, Xing HT, Guo HX, Weng W, Hu SR, Li SX, Huang YH, Sun X, Su ZB (2014) Investigation on the adsorption properties of Cr(VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2(31):12561–12570.  https://doi.org/10.1039/c4ta02004a CrossRefGoogle Scholar
  134. 134.
    Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332.  https://doi.org/10.1039/c3ta13548a CrossRefGoogle Scholar
  135. 135.
    Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10.  https://doi.org/10.1016/j.cej.2015.06.043 CrossRefGoogle Scholar
  136. 136.
    Li Q, Yu J, Zhou F, Jiang X (2015) Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions. Colloids Surf A Physicochem Eng Asp 482:306–314.  https://doi.org/10.1016/j.colsurfa.2015.06.034 CrossRefGoogle Scholar
  137. 137.
    Tan L, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J (2015) Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315.  https://doi.org/10.1016/j.cej.2015.01.110 CrossRefGoogle Scholar
  138. 138.
    Xie Y, Huang Q, Liu M, Wang K, Wan Q, Deng F, Lu L, Zhang X, Wei Y (2015) Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv 5(84):68430–68438.  https://doi.org/10.1039/c5ra08908e CrossRefGoogle Scholar
  139. 139.
    Zong P, Gou J (2014) Rapid and economical synthesis of magnetic multiwalled carbon nanotube/iron oxide composite and its application in preconcentration of U(VI). J Mol Liq 195:92–98.  https://doi.org/10.1016/j.molliq.2014.02.002 CrossRefGoogle Scholar
  140. 140.
    Xiao D-L, Li H, He H, Lin R, Zuo P-L (2014) Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu(II) in water. New Carbon Materials 29(1):15–25.  https://doi.org/10.1016/s1872-5805(14)60122-0 CrossRefGoogle Scholar
  141. 141.
    Zhou L, Ji L, Ma PC, Shao Y, Zhang H, Gao W, Li Y (2014) Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II). J Hazard Mater 265:104–114.  https://doi.org/10.1016/j.jhazmat.2013.11.058 CrossRefGoogle Scholar
  142. 142.
    Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9.  https://doi.org/10.1016/j.cej.2013.08.070 CrossRefGoogle Scholar
  143. 143.
    Zhao X-H, Jiao F-P, Yu J-G, Xi Y, Jiang X-Y, Chen X-Q (2015) Removal of Cu(II) from aqueous solutions by tartaric acid modified multi-walled carbon nanotubes. Colloids Surf A Physicochem Eng Asp 476:35–41.  https://doi.org/10.1016/j.colsurfa.2015.03.016 CrossRefGoogle Scholar
  144. 144.
    Lasheen MR, El-Sherif IY, Sabry DY, El-Wakeel ST, El-Shahat MF (2013) Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: equilibrium, isotherms, and kinetics. Desalin Water Treat 53(13):3521–3530.  https://doi.org/10.1080/19443994.2013.873880 CrossRefGoogle Scholar
  145. 145.
    Ruthiraan M, Mubarak NM, Thines RK, Abdullah EC, Sahu JN, Jayakumar NS, Ganesan P (2015) Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean J Chem Eng 32(3):446–457.  https://doi.org/10.1007/s11814-014-0260-7 CrossRefGoogle Scholar
  146. 146.
    Sobhanardakani S, Zandipak R, Fili Z, Ghoochian M, Sahraei R, Farmany A (2015) Removal of V(V) ions from aqueous solutions using oxidized multi-walled carbon nanotubes. J Water Supply Res Technol AQUA 64(4):425–433.  https://doi.org/10.2166/aqua.2015.053 CrossRefGoogle Scholar
  147. 147.
    Mubarak NM, Thines RK, Sajuni NR, Abdullah EC, Sahu JN, Ganesan P, Jayakumar NS (2014) Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J Chem Eng 31(9):1582–1591.  https://doi.org/10.1007/s11814-014-0101-8 CrossRefGoogle Scholar
  148. 148.
    Fernando MS, Silva RM, Silva KMN (2015) Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl Surf Sci 351:95–103.  https://doi.org/10.1016/j.apsusc.2015.05.092 CrossRefGoogle Scholar
  149. 149.
    Azari A, Kakavandi B, Kalantary RR, Ahmadi E, Gholami M, Torkshavand Z, Azizi M (2015) Rapid and efficient magnetically removal of heavy metals by magnetite-activated carbon composite: a statistical design approach. J Porous Mater 22(4):1083–1096.  https://doi.org/10.1007/s10934-015-9983-z CrossRefGoogle Scholar
  150. 150.
    Zhang H, Huang F, Liu D-L, Shi P (2015) Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide. Chin Chem Lett 26(9):1137–1143.  https://doi.org/10.1016/j.cclet.2015.05.026 CrossRefGoogle Scholar
  151. 151.
    Xiong Y, Ye F, Zhang C, Shen S, Su L, Zhao S (2015) Synthesis of magnetic porous γ-Fe2O3/C@HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution. RSC Adv 5(7):5164–5172.  https://doi.org/10.1039/c4ra12468e CrossRefGoogle Scholar
  152. 152.
    Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2013) Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes. Macromolecules 46(4):1261–1267.  https://doi.org/10.1021/ma302505r CrossRefGoogle Scholar
  153. 153.
    Zhang Q, Yu G, Wang W-J, Li B-G, Zhu S (2012) Preparation of CO2/N2-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant. Macromol Rapid Commun 33(10):916–921.  https://doi.org/10.1002/marc.201200033 CrossRefGoogle Scholar
  154. 154.
    Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction. ACS Appl Mater Interfaces 6(8):5695–5703.  https://doi.org/10.1021/am500236w CrossRefGoogle Scholar
  155. 155.
    Yu G, Lu Y, Liu X, Wang W-J, Yang Q, Xing H, Ren Q, Li B-G, Zhu S (2014) Polyethylenimine-assisted extraction of α-tocopherol from tocopherol homologues and CO2-triggered fast recovery of the extractant. Ind Eng Chem Res 53(41):16025–16032.  https://doi.org/10.1021/ie502568h CrossRefGoogle Scholar
  156. 156.
    Lu Y, Yu G, Wang W-J, Ren Q, Li B-G, Zhu S (2015) Design and synthesis of thermoresponsive ionic liquid polymer in acetonitrile as a reusable extractant for separation of tocopherol homologues. Macromolecules 48(4):915–924.  https://doi.org/10.1021/ma502611s CrossRefGoogle Scholar
  157. 157.
    Wang W, Zhang Q, Yu G, Li B, Zhu S (2014) Amphiphilic macromolecular emulsifier with switchable surface activity and use thereof in preparation of polymer latex. US Patent 20140316049A1Google Scholar
  158. 158.
    Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28(14):5940–5946.  https://doi.org/10.1021/la300051w CrossRefGoogle Scholar
  159. 159.
    Yu G (2015) Separation of tocopherol homologues using amino-based polymer extractants. Master's Thesis, Zhejiang University, ChinaGoogle Scholar
  160. 160.
    Cao Y, Li X (2014) Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20(5–6):713–727.  https://doi.org/10.1007/s10450-014-9615-y CrossRefGoogle Scholar
  161. 161.
    Yu J-G, Zhao X-H, Yu L-Y, Jiao F-P, Jiang J-H, Chen X-Q (2013) Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J Radioanal Nucl Chem 299(3):1155–1163.  https://doi.org/10.1007/s10967-013-2818-y CrossRefGoogle Scholar
  162. 162.
    Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Mol Liq 203:159–168.  https://doi.org/10.1016/j.molliq.2015.01.004 CrossRefGoogle Scholar
  163. 163.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10.  https://doi.org/10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  164. 164.
    Zhou G, Liu C, Tang Y, Luo S, Zeng Z, Liu Y, Xu R, Chu L (2015) Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chem Eng J 280:275–282.  https://doi.org/10.1016/j.cej.2015.06.041 CrossRefGoogle Scholar
  165. 165.
    Tofighy MA, Mohammadi T (2015) Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent. Mater Res Bull 68:54–59.  https://doi.org/10.1016/j.materresbull.2015.03.017 CrossRefGoogle Scholar
  166. 166.
    Zhang M-M, Liu Y-G, Li T-T, Xu W-H, Zheng B-H, Tan X-F, Wang H, Guo Y-M, Guo F-Y, Wang S-F (2015) Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(VI) from aqueous solution. RSC Adv 5(58):46955–46964.  https://doi.org/10.1039/c5ra02388b CrossRefGoogle Scholar
  167. 167.
    Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J (2015) Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater 297:251–260.  https://doi.org/10.1016/j.jhazmat.2015.04.068 CrossRefGoogle Scholar
  168. 168.
    Jahangiri M, Kiani F, Tahermansouri H, Rajabalinezhad A (2015) The removal of lead ions from aqueous solutions by modified multi-walled carbon nanotubes with 1-isatin-3-thiosemicarbazone. J Mol Liq 212:219–226.  https://doi.org/10.1016/j.molliq.2015.09.010 CrossRefGoogle Scholar
  169. 169.
    Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2014) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395.  https://doi.org/10.1016/j.biortech.2014.10.104 CrossRefGoogle Scholar
  170. 170.
    Chen L, Wang H, Wei H, Guo Z, Khan MA, Young DP, Zhu J (2015) Carbon monolith with embedded mesopores and nanoparticles as a novel adsorbent for water treatment. RSC Adv 5(53):42540–42547.  https://doi.org/10.1039/c5ra03014e CrossRefGoogle Scholar
  171. 171.
    Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundamen 5(2):212–223CrossRefGoogle Scholar
  172. 172.
    Zheng H, Liu D, Zheng Y, Liang S, Liu Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167(1–3):141–147.  https://doi.org/10.1016/j.jhazmat.2008.12.093 CrossRefGoogle Scholar
  173. 173.
    Sun C-J, Sun L-Z, Sun X-X (2013) Graphical evaluation of the favorability of adsorption processes by using conditional Langmuir constant. Ind Eng Chem Res 52(39):14251–14260.  https://doi.org/10.1021/ie401571p CrossRefGoogle Scholar
  174. 174.
    Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry 3(1):38–45CrossRefGoogle Scholar
  175. 175.
    Gu X, Yang Y, Hu Y, Hu M, Wang C (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustain Chem Eng 3(6):1056–1065.  https://doi.org/10.1021/acssuschemeng.5b00193 CrossRefGoogle Scholar
  176. 176.
    Tofighy MA, Mohammadi T (2014) Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water. Korean J Chem Eng 32(2):292–298.  https://doi.org/10.1007/s11814-014-0210-4 CrossRefGoogle Scholar
  177. 177.
    Liu H, Zhang J, Ngo HH, Guo W, Wu H, Cheng C, Guo Z, Zhang C (2015) Carbohydrate-based activated carbon with high surface acidity and basicity for nickel removal from synthetic wastewater. RSC Adv 5(64):52048–52056.  https://doi.org/10.1039/c5ra08987e CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guoqiang Yu
    • 1
  • Yang Lu
    • 2
  • Jiang Guo
    • 3
  • Manisha Patel
    • 1
  • Adarsh Bafana
    • 1
  • Xifan Wang
    • 4
  • Bin Qiu
    • 5
  • Clayton Jeffryes
    • 1
  • Suying Wei
    • 6
    Email author
  • Zhanhu Guo
    • 3
    Email author
  • Evan K. Wujcik
    • 1
    • 2
    • 7
    • 8
    Email author
  1. 1.Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA
  2. 2.Materials Engineering And Nanosensor (MEAN) Laboratory, Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaUSA
  3. 3.Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA
  5. 5.College of Environmental Science & EngineeringBeijing Forestry UniversityBeijingPeople’s Republic of China
  6. 6.Department of Chemistry and BiochemistryLamar UniversityBeaumontUSA
  7. 7.Department of Materials ScienceThe University of AlabamaTuscaloosaUSA
  8. 8.Center for Materials for Information Technology [MINT]The University of AlabamaTuscaloosaUSA

Personalised recommendations