Advertisement

Water chemistry and water quality pollution indices of heavy metals: a case study of Chahnimeh Water Reservoirs, Southeast of Iran

  • H. Hosseini
  • A. ShakeriEmail author
  • M. Rezaei
  • M. Dashti Barmaki
  • M. Rastegari Mehr
Original Article

Abstract

Chahnimeh reservoirs are the main drinking water sources for the big cities of Sistan and Baluchestan Province (Zabol, Zahak and Zahedan) and their water quality of may have a great influence on public health. Therefore, the aims of this study are to assess hydrogeochemical characteristics, and heavy metal(loid)s pollution in four Chahnimeh reservoirs using water quality pollution indices and principal component analysis. The concentrations of Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, U, and Zn in 84 water samples were measured for two periods. Hydrogeochemical analyses, Piper and Gibbs diagrams, show a change in the water type from Na–HCO3 and Na–SO4 to Na–Cl, and a bit tendency of water–rock interaction to evaporation, from September 2017 to April 2018. Based on the heavy metal pollution index, heavy metal evaluation index, and contamination index, water quality of Chahnimeh reservoirs is decreased in order: reservoirs 2 > 3 > 4 > 1. The result of statistical analysis reveals that Mo content is affected by a geogenic origin, while Se and U indicate a quasi-independent behavior within the groups reflecting contribution of both geogenic and anthropogenic sources. HCO3 plays a significant role in distribution of Se and U. Also, Fe, Mn and Al oxy-hydroxides can control concentrations of Cu, Pb and Ni. Overall the obtained results indicated that the variation of water quality in the study area was related to climatic conditions, high evaporation, water–rock interaction, different land uses, drying Hamoun Lakes and anthropogenic effects in the Hirmand watershed. The current study reveals that the use of integrated methods such as statistical methods and heavy metal pollution indices to determine the water quality is very suitable.

Keywords

Chahnimeh reservoirs Hydrogeochemistry Water quality Pollution indices Statistical analysis 

Notes

Acknowledgements

The authors wish to express their gratitude to Kharazmi University for financial support and Sistan and Baluchestan regional water company of Iran for logistic assistance. Thanks are extended to Ms. Estelle Toerien for English editing of the article.

References

  1. Afghanistan sitting on a gold mine Archived (2011) the Wayback Machine, 12–31.Google Scholar
  2. Alberto, W. D., del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba–Argentina). Water Research,35(12), 2881–2894.CrossRefGoogle Scholar
  3. Asare-Donkor, N. K., Kwaansa-Ansah, E. E., Opoku, F., & Adimado, A. A. (2015). Concentrations, hydrochemistry and risk evaluation of selected heavy metals along the Jimi River and its tributaries at Obuasi a mining enclave in Ghana. Environmental Systems Research,4(1), 12.CrossRefGoogle Scholar
  4. Backman, B., Bodiš, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1998). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology,36(1–2), 55–64.CrossRefGoogle Scholar
  5. Bahnasawy, M., Khidr, A. A., & Dheina, N. (2011). Assessment of heavy metal concentrations in water, plankton, and fish of Lake Manzala, Egypt. Turkish Journal of Zoology,35(2), 271–280.Google Scholar
  6. Bhardwaj, R., Gupta, A., & Garg, J. K. (2017). Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science,31(1), 52–66.CrossRefGoogle Scholar
  7. Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials,173(1–3), 384–392.CrossRefGoogle Scholar
  8. Corteel, C., Dini, A., & Deyhle, A. (2005). Element and isotope mobility during water–rock interaction processes. Physics and Chemistry of the Earth, Parts A/B/C,30(17–18), 993–996.CrossRefGoogle Scholar
  9. Das Sharma, S. (2019). Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution,5(1), 161–178.Google Scholar
  10. Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal,57(4), 295–304.CrossRefGoogle Scholar
  11. Egbueri, J. C. (2018). Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: A comparative approach. International Journal of Energy and Water Resources,2(1–4), 33–48.CrossRefGoogle Scholar
  12. Emberger, L. (1955). Une classification biogeographique des climats. Recueil des travaux des laboratories des botanique, geologie et zoologie de la Faculte des Sciences de l’Universite de Montpellier. Serie Botanique,7, 3–45.Google Scholar
  13. Fito, J., Bultossa, G., & Kloos, H. (2019). Physicochemical and heavy metal constituents of the groundwater quality in Haramaya Woreda, Oromia Regional State, Ethiopia. International Journal of Energy and Water Resources,3(1), 23–32.CrossRefGoogle Scholar
  14. Gibbs, A. J., & McIntyre, G. A. (1970). The diagram, a method for comparing sequences: Its use with amino acid and nucleotide sequences. European Journal of Biochemistry,16(1), 1–11.CrossRefGoogle Scholar
  15. González-Audícana, M., Saleta, J. L., Catalán, R. G., & García, R. (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing,42(6), 1291–1299.CrossRefGoogle Scholar
  16. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14(8), 975–1001.CrossRefGoogle Scholar
  17. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research,34(3), 807–816.CrossRefGoogle Scholar
  18. Homayoun Neshad, I., Savari, A., Saeidpour, B., & Nouri, G. R. (2007). Investigation of water quality: A case study of Zabol Chah-Nimeh Reservoirs. Journal of Environmental Science and Technology,9, 13–21.Google Scholar
  19. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement,20(1), 141–151.CrossRefGoogle Scholar
  20. Klake, R. K., Nartey, V. K., Doamekpor, L. K., & Edor, K. A. (2012). Correlation between heavy metals in fish and sediment in Sakumo and Kpeshie Lagoons, Ghana. Journal of Environmental Protection,3(09), 1070.CrossRefGoogle Scholar
  21. Klavinš, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in rivers of Latvia. Science of the Total Environment,262(1–2), 175–183.CrossRefGoogle Scholar
  22. Kumar, P. S., Delson, P. D., & Babu, P. T. (2012). Appraisal of heavy metals in groundwater in Chennai city using a HPI model. Bulletin of Environmental Contamination and Toxicology,89(4), 793–798.CrossRefGoogle Scholar
  23. Kumari, R., & Sharma, R. C. (2019). Assessment of water quality index and multivariate analysis of high altitude sacred lake Prashar, Himachal Pradesh, India. International Journal of Environmental Science and Technology,16(10), 6125–6134.CrossRefGoogle Scholar
  24. Loni, O. A., Zaidi, F. K., Alhumimidi, M. S., Alharbi, O. A., Hussein, M. T., Dafalla, M., et al. (2015). Evaluation of groundwater quality in an evaporation dominant arid environment; A case study from Al Asyah area in Saudi Arabia. Arabian Journal of Geosciences,8(8), 6237–6247.CrossRefGoogle Scholar
  25. Mahato, M., Singh, P., Singh, A., & Tiwari, A. (2016). Assessment of major ionic compositions and anthropogenic influences in the rainwater over a coal mining environment of Damodar River basin, India. Pollution,2(4), 461–474.Google Scholar
  26. Mandal, S. K., Dutta, S. K., Pramanik, S., & Kole, R. K. (2019). Assessment of river water quality for agricultural irrigation. International Journal of Environmental Science and Technology,16(1), 451–462.CrossRefGoogle Scholar
  27. Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metals in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health Part A,31(2), 283–289.Google Scholar
  28. Najafi, A., & Vatanfada, J. (2011). Environmental challenges in trans-boundary waters, case study: Hamoon Hirmand Wetland (Iran and Afghanistan). International Journal of Water Resources and Arid Environments,1(1), 16–24.Google Scholar
  29. Nasrabadi, T., Bidhendi, G. N., Karbassi, A., Grathwohl, P., & Mehrdadi, N. (2011). Impact of major organophosphate pesticides used in agriculture to surface water and sediment quality (Southern Caspian Sea basin, Haraz River). Environmental Earth Sciences,63(4), 873–883.CrossRefGoogle Scholar
  30. Ndungu, J., Augustijn, D. C., Hulscher, S. J., Fulanda, B., Kitaka, N., & Mathooko, J. M. (2015). A multivariate analysis of water quality in Lake Naivasha, Kenya. Marine and Freshwater Research,66(2), 177–186.CrossRefGoogle Scholar
  31. Noori, R., Karbassi, A., Khakpour, A., Shahbazbegian, M., Badam, H. M. K., & Vesali-Naseh, M. (2012). Chemometric analysis of surface water quality data: Case study of the Gorganrud River Basin, Iran. Environmental Modeling and Assessment,17(4), 411–420.CrossRefGoogle Scholar
  32. Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination,260(1–3), 129–136.CrossRefGoogle Scholar
  33. Nowak, B. (1998). Contents and relationship of elements in human hair for a non-industrialised population in Poland. Science of the Total Environment,209(1), 59–68.CrossRefGoogle Scholar
  34. Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., & Huang, C. H. (2006). Assessment of seasonal variations in surface water quality. Water Research,40(20), 3800–3810.CrossRefGoogle Scholar
  35. Pandey, J., & Singh, R. (2017). Heavy metals in sediments of Ganga River: Up- and downstream urban influences. Applied Water Science,7(4), 1669–1678.CrossRefGoogle Scholar
  36. Pejman, A. H., Bidhendi, G. N., Karbassi, A. R., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology,6(3), 467–476.CrossRefGoogle Scholar
  37. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. EOS, Transactions American Geophysical Union,25(6), 914–928.CrossRefGoogle Scholar
  38. Prasad, B., & Mondal, K. K. (2008). The impact of filling an abandoned open cast mine with fly ash on ground water quality: A case study. Mine Water and the Environment,27(1), 40–45.CrossRefGoogle Scholar
  39. Prasad, B., & Sangita, K. (2008). Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly ash: A case study. Mine Water and the Environment,27(4), 265–267.CrossRefGoogle Scholar
  40. Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012). Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences,67(7), 1987–2001.CrossRefGoogle Scholar
  41. Qin, H. P., Su, Q., Khu, S. T., & Tang, N. (2014). Water quality changes during rapid urbanization in the Shenzhen River Catchment: An integrated view of socio-economic and infrastructure development. Sustainability,6(10), 7433–7451.CrossRefGoogle Scholar
  42. Rajaei, G., Mansouri, B., Jahantigh, H., & Hamidian, A. H. (2012). Metal concentrations in the water of Chah nimeh reservoirs in Zabol, Iran. Bulletin of environmental contamination and toxicology,89(3), 495–500.CrossRefGoogle Scholar
  43. Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology,7(4), 785–792.CrossRefGoogle Scholar
  44. Semiromi, F. B., Hassani, A. H., Torabian, A., Karbassi, A. R., & Lotfi, F. H. (2011). Evolution of a new surface water quality index for Karoon catchment in Iran. Water Science and Technology,64(12), 2483–2491.CrossRefGoogle Scholar
  45. Singh, G., & Kamal, R. K. (2017). Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Applied Water Science, 7(3), 1479–1485.CrossRefGoogle Scholar
  46. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research,38(18), 3980–3992.CrossRefGoogle Scholar
  47. Tao, Y., Yuan, Z., Wei, M., & Xiaona, H. (2012). Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment,184(7), 4367–4382.CrossRefGoogle Scholar
  48. Varol, S., & Köse, İ. (2018). Effect on human health of the arsenic pollution and hydrogeochemistry of the Yazır Lake wetland (Çavdır-Burdur/Turkey). Environmental Science and Pollution Research,25(16), 16217–16235.CrossRefGoogle Scholar
  49. Vekerdy, Z., Dost, R. J. J., Reinink, G., & Partow, H. (2006). History of environmental change in the Sistan Basin based on satellite image analysis: 1976–2005. Geneva: United Nations Environment Programme.Google Scholar
  50. Vu, C. T., Lin, C., Shern, C. C., Yeh, G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators,82, 32–42.CrossRefGoogle Scholar
  51. Wasike, P. W., Nawiri, M. P., & Wanyonyi, A. A. (2019). Levels of heavy metals (Pb, Mn, Cu and Cd) in water from River Kuywa and the adjacent wells. Environment and Ecology Research,7(3), 135–138.Google Scholar
  52. WHO (World Health Organization). (2011). Guidelines for drinking-water quality. Edition, F.,38(4), 104–108.Google Scholar
  53. Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment,612, 914–922.CrossRefGoogle Scholar
  54. Zaidi, F. K., Nazzal, Y., Jafri, M. K., Naeem, M., & Ahmed, I. (2015). Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environmental Monitoring and Assessment,187(10), 607.CrossRefGoogle Scholar
  55. Zelano, I., Malandrino, M., Giacomino, A., Buoso, S., Conca, E., Sivry, Y., et al. (2017). Element variability in lacustrine systems of Terra Nova Bay (Antarctica) and concentration evolution in surface waters. Chemosphere,180, 343–355.CrossRefGoogle Scholar
  56. Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metals and metalloid contamination in Louisiana Lake Pontchartrain Estuary along I-10 Bridge. Transportation Research Part D: Transport and Environment,44, 66–77.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  • H. Hosseini
    • 1
  • A. Shakeri
    • 1
    Email author
  • M. Rezaei
    • 2
  • M. Dashti Barmaki
    • 1
  • M. Rastegari Mehr
    • 1
  1. 1.Department of Applied Geology, Faculty of Earth SciencesKharazmi UniversityTehranIran
  2. 2.Department of Earth SciencesShiraz UniversityShirazIran

Personalised recommendations