Rice husk and water treatment plant sludge incorporated into soil–cement brick

  • M. F. L. Barbosa
  • A. B. S. Pironcelli
  • C. A. Silva
  • A. C. Junior
  • M. P. Cereda
  • F. J. C. Magalhães FilhoEmail author
Original Paper


Soil–cement brick is an alternative material for construction, which enables waste recycling, resulting in the reduction of raw material extraction. Accordingly, this study evaluated by physical and chemical tests, the incorporation of rice husk, and water treatment plant (WTP) sludge in soil-cement brick, without burning these wastes in the soil mixtures (in natura). It was identified in the rice husk a content of 5500 mg kg−1 of phosphorus, 4000 mg kg−1 of nitrogen, and 280,000 mg kg−1 of lignin. The sludge had 3662 mg L−1 of COD, 2270 mg L−1 of BOD, and 7580 mg L−1 of phosphorus. This suggests the use of rice husk in natura, although the sludge presents the possibility of developing microorganisms that can cause negative effects on the material, being necessary long-term studies. Physical characterization tests were conducted according to Brazilian National Standards (NBRs) 10,836, 7181, 6459, 7180, and 7182 (Brazilian standard practices). The soil was classified as sandy, well sorted, after a physical analysis with a liquid limit (LL), plastic limit (PL), and plasticity index (PI) of 26.10%, 10.51%, and 10.59%, respectively. The sludge presented the same LL as the soil and a PL of 8.80%. The greatest amount of rice husk used was 21.43% with a resistance of 2.07 MPa, while the amount of sludge used was 35.71% with a resistance of 2.30 MPa, both after 28 days of curing.


Waste Resistance Water absorption 



The work described in this paper was financially supported by Águas Guariroba S. A. and Eco Máquina, Brazil, Project no. 2729/2013/15.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Abreu, P. G., Paiva, D. P., Abreu, V. M. N., Coldebella, A., Cestonaro, T., et al. (2011). Rice husks and soy straw as substrate for composting of broiler carcasses. Acta Scientiarum Animal Sciences, 33(1), 51–57.CrossRefGoogle Scholar
  2. Angulo, S. C., Teixeira, C. E., Castro, A. L., Nogueira, T. P., et al. (2011). Construction and demolition waste: Evaluation of quantification methods. Engenharia Sanitaria e Ambiental. Scholar
  3. APHA. (2012). Standard methods for the examination of water and wastewater (22ª ed.). Washington: American Public Health Association.Google Scholar
  4. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10832. (1989). Fabricação de tijolo maciço de solo-cimento com a utilização de prensa manual. Rio de Janeiro.Google Scholar
  5. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10836. (1994). Blocos vazados de solo-cimento sem função estrutural: determinação da resistência à compressão e da absorção de água. Rio de Janeiro.Google Scholar
  6. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6459. (1984a). Solo: determinação do limite de liquidez. Rio de Janeiro.Google Scholar
  7. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7180. (1984b). Solo: determinação do limite de plasticidade. Rio de Janeiro.Google Scholar
  8. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7181. (1984c). Solo: análise granulométrica. Rio de Janeiro.Google Scholar
  9. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7182. (1986). Solo: ensaio de compactação. Rio de Janeiro.Google Scholar
  10. Bediako, M., & Amankwah, E. O. (2015). Analysis of chemical composition of Portland cement in Ghana: A key to understand the behavior of cement. Advances in Materials Science and Engineering. Scholar
  11. Bezerra, I. M. T., Souza, J., Carvalho, J. B. Q., Neves, G., et al. (2011). Application of the rice husk ash in mortars for bricklaying. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, 15(6), 639–645.CrossRefGoogle Scholar
  12. Brazilian Compendium of Animal Feeding. Ministério da Agricultura e Abastecimento. (1998). Matéria-prima (p. 12). Brasília: Sindirações/ANFAR: CBNA; SDR/MA.Google Scholar
  13. Bueno, J. R. P., Berton, R. S., Silveira, A. P. D., Chiba, M. K., Andrade, C. A., Maria, I. C., et al. (2011). Chemical and microbiological attributes of an oxisol treated with successive applications of sewage sludge. Revista Brasileira de Ciência do Solo. Scholar
  14. César, A. A. S., Bufalino, L., Mendes, L. M., Mesquita, R. G. A., Protásio, T. P., Mendes, R. F., et al. (2017). Transforming rice husk into a high-added value product: Potential for particleboard production. Ciência Florestal, 27(1), 303–313.CrossRefGoogle Scholar
  15. Clare, K. E., & Sherwood, P. T. (1954). The effect of organic matter on the setting of soil cement mixtures. Journal of Chemical Technology and Biotechnology, 4(11), 625–630.Google Scholar
  16. Cornwell, D. A. (2006). Water treatment residuals engineering. Denver: AWWA Research Foundation and American Water Works Association.Google Scholar
  17. Damineli, B. L., Pileggi, R. G., John, V. M., et al. (2017). Influence of packing and dispersion of particles on the cement content of concretes. Revista IBRACON de Estruturas e Materiais. Scholar
  18. Dantas, Í. B., de Oliveira, J. A., dos Santos, H. O., Pinho, É. V. R. Von, Rosa, S. D. V. F., et al. (2012). Influence of lignin content in soybean seed coat on the incidence of the storage fungus Aspergillus flavus. Revista Brasileira de Sementes, 34, 541–548.CrossRefGoogle Scholar
  19. Della, V. P., Hotza, D., Junkes, J. A., Oliveira, A. P. N., et al. (2006). Comparative study of silica obtained from acid leaching of rice husk and the silica obtained by thermal treatment of rice husk ash. Química Nova. Scholar
  20. Della, P. V., Kuhn, I., Hotza, D., et al. (2001). Characterization of rice husk ash for use as raw material in the manufacture of silica refractory. Química Nova. Scholar
  21. Della, V. P., Kuhn, I., Hotza, D., et al. (2005). Reciclagem de resíduos agroindustriais: cinza de casca de arroz como fonte alternativa de sílica. Cerâmica Industrial, 10(2), 22–25.Google Scholar
  22. Di Bernardo, L., & Dantas, A. B. (2005). Métodos e técnicas de tratamento de água. São Carlos: Rima.Google Scholar
  23. Ferrari, V. J., Souza, A. H. C., Baltazar, H. P., Dotto, W., Vieira Neto, J. G., et al. (2014). Soil–cement hollow bricks produced in the Caiuá Arenite Region of Paraná. Ambiente Construído. Scholar
  24. Ferreira, R. C., & Freire, W. J. (2004). Efficiency of soil stabilization and quality of bricks manufactured with soil added with chemical additives and evaluated through the association of destrutive and non-destructive methods. Engenharia Agrícola. Scholar
  25. Foletto, E. L., Hoffmann, R., Hoffmann, R. S., Jr, Portugal, Utinguassú, L., Jahn, S. L., et al. (2005). Applicability of rice husk ash. Química Nova. Scholar
  26. Hassanain, A. M., El-Din, B., Hegazy, E., Fouad, H. A., et al. (2012). Brick manufacturing from water treatment sludge and rice husk ash. Australian Journal of Basic and Applied Science, 6, 453–461.Google Scholar
  27. Huang, C., Pan, J. R., Sun, K. D., Liaw, C. T., et al. (2001). Reuse of water treatment plant sludge and dam sediment in brick-making. Water Science and Technology, 44, 273–277.CrossRefGoogle Scholar
  28. IAL. Adolf Lutz Institute. (2005). Normas analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. Brasília: Ministério da Saúde, Agência Nacional de Vigilância Sanitária.Google Scholar
  29. Kawamura, S. (2000). Integrated design and operation of water treatment facilities. New York: Wiley.Google Scholar
  30. Khedari, J., Watsnasathaoirn, P., Hirunlabh, J., et al. (2005). Development of fibre-based soil cement block with low thermal conductivity. Cement and Concrete Composites, 27(1), 111–116.CrossRefGoogle Scholar
  31. Lancaster, F. J. (1999). Metallurgy of Welding (Vol. 6, pp. 110–173). Londres: Abington Publishing.CrossRefGoogle Scholar
  32. Leonel, R. F., Folgueras, M. V., Dalla Valentina, L. V. O., Prim, S. R., Prates, G. A., Caraschi, J. C., et al. (2017). Characterization of soil–cement bricks with incorporation of used foundry sand. Cerâmica. Scholar
  33. Malia, M., Brito, J., Pinheiro, M. D., Bravo, M., et al. (2013). Construction and demolition waste indicators. Waste Managagement Research, 31, 241–255.CrossRefGoogle Scholar
  34. Mattos, F. J. A. (1997). Introdução a fitoquímica experimental (pp. 43–75). Fortaleza: Federal University of Ceará.Google Scholar
  35. Mehta, P.K. (1992). Rice husk ash—A unique suplementary cementing material. In: V. M. Malhotra (ed), Advances in concrete technology. (pp 407–431). Ottawa: CANMET.Google Scholar
  36. Milani, A. P. S., & Freire, W. J. (2006). Physical and mechanical characteristics of soil–cement and rice husk mixtures. Engenharia Agrícola, Jaboticabal. Scholar
  37. Oliveira, F. C., Mattiazzo, M. E., Marciano, C. R., Abreu Junior, C. H., et al. (2002). Phytoavailability and heavy metal content in a typic hapludox and in sugarcane plants fertilized with urban waste compost. Revista Brasileira de Ciência do Solo. Scholar
  38. Pinheiro, M. L., Alvarenga, R. C. S. S., Ribeiro, B. C., Silva Júnior, P. R., Sarmet, M. S., Fassoni, D. P., et al. (2013). Efficiency of soil stabilization and quality of bricks manufactured with soil added with chemical additives and evaluated through the association of destrutive and non-destructive methods. Ambiente Construído. Scholar
  39. Pinto, T. P. (1980). Evolução das pesquisas de laboratório sobre solo-cimento. São Pauo: ABPC.Google Scholar
  40. Richardson, A. E. (2001). Prospects for using soli microorganisms to in promove the acquisition of phosphous by plants. Australian Journal of plant Physiology, 156(3), 989–996.CrossRefGoogle Scholar
  41. Richter, C. A. (2001). Tratamento de lodos de estações de tratamento de água. São Paulo: Edgard Blücher LTDA. ISBN: 9788521202899.Google Scholar
  42. Rodrigues, L. P., & Holanda, J. N. F. (2013). Influence of the incorporation of water treatment plant (WTP) sludge on the technological properties of soil–cement bricks. Cerâmica, São Paulo, 59(352), 551–556.CrossRefGoogle Scholar
  43. Silva, D. J. (2002). Análises de alimentos: métodos químicos e biológicos (pp. 113–115). Viçosa: UFV.Google Scholar
  44. Sommers, L. E. (1977). Chemical composition of sewage sludges and analysis of their potential use as fertilizers 1. Journal of Environmental Quality, 6(2), 225–232.CrossRefGoogle Scholar
  45. Souza, F. X. (1993). Casca de arroz carbonizada: um substrato para a propagação de plantas, no 406 (Vol. 46). Porto Alegre: CNPAI/EMBRAPA. Revista Lavoura Arrozeira.Google Scholar
  46. Souza, M. I. B., Segantini, A. A. S., Pereira, J. A., et al. (2008). Soil–cement pressed bricks made with concrete wastes. Revista Brasileira de Engenharia Agricola e Ambiental, 12(2), 205–212.CrossRefGoogle Scholar
  47. Vanderlei, R. D., Peinado, H. S., Nagano, M. F., Molin Filho, R. G. D., et al. (2014). Sugarcane bagasse ash as concrete and mortar aggregate. Revista Eletrônica de Engenharia Civil. Scholar
  48. Von Sperling, M. (2007). Wastewater characteristcs, treatment and disposal. London, UK: IWA Publishing.Google Scholar
  49. Zabalza, B. I., Valero, C. A., Aranda, U. A., et al. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Sanitary and Environmental EngineeringDom Bosco Catholic UniversityCampo GrandeBrazil
  2. 2.CeTeAgro-Centre of Technology and AgribusinessDom Bosco Catholic UniversityCampo GrandeBrazil

Personalised recommendations