Advertisement

Asian Journal of Civil Engineering

, Volume 20, Issue 3, pp 395–408 | Cite as

Mecano-reliability analysis applied to RC tank under seismic loads according to the Algerian seismic standard

  • Amar Aliche
  • Hocine HammoumEmail author
  • Karima Bouzelha
Original Paper
  • 8 Downloads

Abstract

The deterministic methods used in the design codes of concrete storage tanks on ground are based on the principle of safety coefficients. These deterministic analyses are subject to uncertainties related to the assessment of seismic loading. To analyze the reliability of these structures, one proposes in this study a probabilistic approach by considering two variables, the hydraulic static load inside the tank and the seismic acceleration of the soil. The reliability analysis is conducted using a computer code developed with Matlab© software based on the Monte Carlo simulation method. The failure probability is evaluated at different time of the day for each limit state function considered in this work. Fragility curves are developed representing the failure probability at the different levels of seismic acceleration for different types of soil. The study concludes that there is no soil type effect on the failure risk evaluation, and that the failure mode by sloshing is the most prejudicial failure risk for the reservoir.

Keywords

Reliability RC tanks Monte Carlo simulation Seismic acceleration Failure probability Fragility curves 

Notes

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Ahmadi, H., Mohammadi, A. H., & Yeganeh, A. (2015). Probability density functions of SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to axial loading. Thin-Walled Structures, 94, 485–499.CrossRefGoogle Scholar
  2. Algerian seismic code (RPA99/2003). (2003). D.T.R.-B.C. 2.48. National Center for Applied Research in Earthquake Engineering (CGS), Algiers, Algeria. (OPU). ISBN:9961-923-13-8).Google Scholar
  3. Aliche, A. (2016). Contribution à l’analyse de l’évolution de la vulnérabilité des réservoirs en béton dans leur cycle de vie. Ph.D thesis, Mouloud Mammeri University of Tizi-Ouzou, Algeria.Google Scholar
  4. ASCE. (2010). Minimum design loads for buildings and other structures (pp. 7–16). Reston: ASCE/SEI.Google Scholar
  5. Breysse, D. (2009). Maîtrise des risques en génie civil. Hermès Science publications-Lavoisier ed, France.Google Scholar
  6. Choi, I. K., Choun, Y. S., Ahn, S. M., & Seo, J. M. (2006). Seismic fragility analysis of a CANDU type NPP containment building for near-fault ground motions. KSCE Journal of Civil Engineering, 10(2), 105–112.CrossRefGoogle Scholar
  7. Cremona, C. (2012). Structural performance: Probability-based assessment. Oxford: Wiley.Google Scholar
  8. Dupont, A. (1979). Hydraulique (urbaine ed.). France: Eyrolles.Google Scholar
  9. Eurocode-8. (2003). Design of structures for earthquake resistance, part 4: silos, tanks and pipelines. Brussels: European Committee for Standardization.Google Scholar
  10. Fascicule 74. (1998). Construction des réservoirs en béton—cahier des clauses techniques générales. Ministère de l’équipement des transports et du logement, Paris, France.Google Scholar
  11. Gholizad, A., Golafshani, A., & Akrami, V. (2012). Structural reliability of offshore platforms considering fatigue damage and different failure scenarios. Ocean Engineering, 46, 1–8.CrossRefGoogle Scholar
  12. Hamdan, F. H. (2000). Seismic behavior of cylindrical steel liquid storage tanks. Journal of Constructional Steel Research, 53(3), 307–333.MathSciNetCrossRefGoogle Scholar
  13. Hammoum, H., Bouzelha, K., & Hannachi, N. E. (2010). Analyse hydrodynamique d’un réservoir circulaire en béton arme, posé au sol. Annales du BTP, 2(3), 13–22.Google Scholar
  14. Hammoum, H., Bouzelha, K., & Slimani, D. (2016). Seismic risk of rc water storage elevated tanks: Case study. Handbook of materials failure analysis with case studies from the chemicals, concrete and power industries, 187–216.Google Scholar
  15. He, W., Liu, L. C., & Yang, J. P. (2013). Reliability analysis of stiffened tank-roof stability with multiple random variables using minimum distance and Lagrange methods. Engineering Failure Analysis, 32, 304–311.CrossRefGoogle Scholar
  16. Housner, G. W. (1963). The dynamic behavior of water tanks. Bulletin of the Seismological Society of America, 53(2), 381–387.Google Scholar
  17. JCSS. (2001). Probabilistic model code. Joint Committee on Structural Safety., http://www.jcss.ethz.ch/JCSSPublications/PMC/PMC.html.
  18. Lemaire, M., Chateauneuf, A., & Mitteau, J. C. (2009). Structural reliability. London: Wiley.CrossRefGoogle Scholar
  19. Lupoi, A., & Callari, C. (2011). Probabilistic method for the seismic assessment of existing concrete gravity dams. Structure and Infrastructure Engineering, 8(10), 985–998.Google Scholar
  20. Monteiro, R., Delgado, R., & Pinho, R. (2016). Probabilistic seismic assessment of RC bridges: Part I—Uncertainty models. Structures Elsevier, 5, 258–273.CrossRefGoogle Scholar
  21. Nachtigall, I., Gebbeken, N., & Urrutia-Galicia, J. L. (2003). On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base. Engineering Structures, 25(2), 201–213.CrossRefGoogle Scholar
  22. Nielson, B. G., & DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering and Structural Dynamics, 36(6), 823–839.CrossRefGoogle Scholar
  23. NZS 1170.5. (2004). Structural design actions Part 5: Earthquake actions—New Zealand. New Zealand Standard (NZS).Google Scholar
  24. Ormeño, M., Larkin, T., & Chouw, N. (2015). Evaluation of seismic ground motion scaling procedures for linear time-history analysis of liquid storage tanks. Engineering Structures, 102, 266–277.CrossRefGoogle Scholar
  25. Peyras, L., Carvajal, C., Felix, H., Bacconnet, C., Royet, P., Becue, J. P., et al. (2012). Probability-based assessment of dam safety using combined risk analysis and reliability methods—Application to hazards studies. European Journal of Environmental and Civil Engineering, 16(7), 795–817.CrossRefGoogle Scholar
  26. Razzaghi, M. S., & Eshghi, S. (2014). Probabilistic seismic safety evaluation of precode cylindrical oil tanks. Journal of Performance of Constructed Facilities, 29(6), 1–7.Google Scholar
  27. Sezen, H., Livaoglu, R., & Dogangun, A. (2008). Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks. Engineering Structures, 30, 794–803.CrossRefGoogle Scholar
  28. Tan, G. H., Thevendran, V., Das Gupta, N. C., & Thambiratnam, D. P. (1993). Design of reinforced concrete cylindrical water tanks for minimum material cost. Computers & Structures, 48, 803–810.CrossRefGoogle Scholar
  29. Wang, J., & Lin, M. (2018). Seismic probabilistic risk analysis and application in a nuclear power plant. Nuclear Technology, 1–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringMouloud Mammeri UniversityTizi OuzouAlgeria

Personalised recommendations