Advertisement

Intercomparison and Performance of Maize Crop Models and Their Ensemble for Yield Simulations in Brazil

  • Yury C. N. DuarteEmail author
  • Paulo C. Sentelhas
Research
  • 7 Downloads

Abstract

Maize yield prediction is of extreme importance for both identifying those locations with high potential for this crop and determining the yield gaps of the crop where it is currently produced. The most feasible way to estimate crop yields is with the use of crop simulation models, since well calibrated and evaluated. Even though, these estimations have uncertainties once the crop models are not complete. Recent studies have shown that crop models´ uncertainties can be reduced when several models are used together, in an ensemble. Considering that, this study aimed to calibrate and evaluate three crop simulation models (AEZ-FAO; DSSAT-CERES-Maize and APSIM-Maize) to estimate maize potential and attainable yields and to assess the performance of different ensemble strategies to reduce their uncertainties for maize yield prediction. Weather, soil and maize yield data from 79 experimental sites in Brazil were used for calibrating and evaluating these models. After that, the models showed only a good performance, with mean absolute errors (MAE) between 727 and 1376 kg ha−1, R2 between 0.49 and 0.79, d index between 0.78 and 0.94, and C index from 0.54 to 0.84. When the ensemble was applied, using the combination of two models (DSSAT-CERES-Maize and APSIM-Maize), the results showed a better performance than each single model or even the average of them, with MAE = 799 kg ha−1, R2 = 0.79, d = 0.94 and C = 0.84, allowing us to conclude that the ensemble of simulated maize yields is a good strategy to reduce uncertainties on simulations.

Keywords

Multi-model approach Ensemble strategies Attainable yields 

Supplementary material

42106_2019_73_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 40 kb)

References

  1. Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Roma, FAO (Irrigation and Drainage Paper 56).Google Scholar
  2. Amaral, T. A., Lima, A. C. R., Andrade, C. L. T., & Silva, S. D. A. (2015). Parametrização e avaliação do modelo CSM-CERES-Maize para cultivares de milho recomendadas para a microrregião de Pelotas, RS. Revista Brasileira de Milho e Sorgo, 14, 371–391.CrossRefGoogle Scholar
  3. Andrade, C. L. T., Silva, P. P. G., Magalhães, B. G., Paixão, J. S., Melo, B. F., & Tigges, C. H. P. (2016). Parametrization of CSM-CERES-Maize model for a cultivar of high yield. Bento Gonçalves: XXXI Brazilian Congress of Maize and Sorghum. (in Portuguese).Google Scholar
  4. Andrioli, K. G., & Sentelhas, P. C. (2009). Brazilian maize genotypes sentitivity to water deficit estimated through a simple crop model. Pesquisa Agropecuaria Brasileira, 44, 653–660.CrossRefGoogle Scholar
  5. Asseng, S., Ewert, F., Rosenzweig, C. J. W., Hatfield, J. L., Ruane, A. C., Bootle, K. J., et al. (2013). Uncertainty in simulation wheat yields under climate change. Nature Climate Change, 3, 827–832.CrossRefGoogle Scholar
  6. Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147.CrossRefGoogle Scholar
  7. Ban, H. Y., Sim, D., Lee, K. J., Kim, J., Kim, K. S., & Lee, B. W. (2015). Evaluating maize growth models “CERES-Maize” and “IXIM-Maize” under elevation temperature conditions. Journal of Crop Science and Biotecnology, 18, 265–272.CrossRefGoogle Scholar
  8. Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014). How do various maize crop models vary in their responses to climate changes factors? Global Change Biology, 20, 2301–2320.CrossRefPubMedGoogle Scholar
  9. Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensembles in southern Brazil. Field Crops Research, 200, 28–37.CrossRefGoogle Scholar
  10. Brasil (1981). Ministry of Mines and Energy. General Secretary. Project RADAMBRASIL. Rio de Janeiro: Natural Resources Report, 25, 29, 31. (in Portuguese).Google Scholar
  11. Brown, H. E., Huth, N. I., Holzworth, D. P., Teixeira, E. I., Zyskowski, R. F., Hargreaves, J. N. G., et al. (2014). Plant modeling framework: software for building and running crop models on the APSIM plataform. Environmental Modeling & Software, 62, 385–398.CrossRefGoogle Scholar
  12. Camargo, A. P., & Sentelhas, P. C. (1997). Performance evaluation of diferente potential evapotranspiration models in the state of São Paulo, Brazil. Revista Brasileira de Agrometeorologia, 5, 89–97.Google Scholar
  13. Chauhan, Y. S., Solomon, K. F., & Rodriguez, D. (2013). Characterization of north-eastern Australian environments using APSIM for increasing rainfed maize production. Field Crops Research, 144, 245–255.CrossRefGoogle Scholar
  14. Chisanga, C. B., Phiri, E., Shepande, C., & Sichingabula, H. (2015). Evaluating CERES-Maize model using planting dates and nitrogen fertilizer in Zambia. Journal of Agricultural Science, 7, 79–97.CrossRefGoogle Scholar
  15. Costa, L. G., Marin, F. R., Nassif, D. S. P., Pinto, H. M. S., & Lopes-Assad, M. L. R. C. (2014). Simulating trash and nitrogen management effects on sugar cane yield. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 469–474. (in Portuguese).CrossRefGoogle Scholar
  16. de Wit, C., T. (1965). Photosyntesis of leaf canopies. Wageningen: PUDOC, Agriculture Research Report, 663, p. 57.Google Scholar
  17. Dias, H. B., & Sentelhas, P. C. (2017). Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research, 231, 174–185.CrossRefGoogle Scholar
  18. Doorenbos, J. & Kassam, A. H. (1979). Yield response do water. Rome, FAO (Irrigation and Drainage Paper 33).Google Scholar
  19. Doorenbos, J, & Pruitt, W., O. (1977). Crop water requirements. Rome, FAO (Irrigation and Drainage Paper 24).Google Scholar
  20. Durand, J. L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H. J., et al. (2017). How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy, 100, 67–75.CrossRefGoogle Scholar
  21. EMBRAPA Maize and Sorghum (2016). Available in: https://www.embrapa.br/milho-e-sorgo/solucoes-tecnologicas/ensaionacional.
  22. García-Lopez, J., Lorite, I. J., García-Ruiz, R., & Domínguez, J. (2014). Evaluation of three simulation approaches for assessing yield of rainfed sunflower in Mediterrnean enviroment for climate change impact modeling. Climate Change, 162, 124–147.Google Scholar
  23. Heinemann, A. B., & Sentelhas, P. C. (2011). Environmental group identification for upland rice production in central Brazil. Scientia Agricola, 68, 540–547.CrossRefGoogle Scholar
  24. Heinemann, A. B., Dingkuhn, M., Luquet, D., Combres, J. C., & Chapman, S. (2008). Characterization of drought stress evironments for upland rice and maize in central Brazil. Euphytica, 162, 395–410.CrossRefGoogle Scholar
  25. Holzworth, D. P., Huth, N. I., de Voil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., et al. (2014). APSIM—Evolution towards a new generation of agricultural systems simulation. Environmental Modeling & Software, 62, 327–350.CrossRefGoogle Scholar
  26. Hoogenboom, G., Jones, J. W., Porter, C. H., Wilkens, P. W., Boote, K. J., Batchelor, W. D., Hunt, L. A., Tsuji, G. Y. (2003). DSSAT v4 – A decision support system for agrotechnology transfer. International Consortium of Agricultural Systems Applications.Google Scholar
  27. Huth, N. I., Bristow, K. L., & Verburg, K. (2012). SWIM3: Model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55, 1303–1313.Google Scholar
  28. Jabeen, F., Asif, M., Iftikhar, A., & Salman, M. (2017). Temperature trends and its impact on Zea mays (maize) crop in Faisalabad city through DSSAT-CERES-Maize model. Scientia Agricultarae, 17, 8–14.Google Scholar
  29. Jones, E., Oliphant, T., Peterson, P. SciPy: Open source scientific tools for Python. Available in: http://www.scipy.org/. (2001).
  30. Justino, F., Oliveira, E. C., Rodrigues, R. A., Gonçalves, P. H. L., Souza, P. J. O. P., Stordal, F., et al. (2013). Mean and interanual variability of maize and soybean in Brazil under global warming conditions. American Journal of Climate Change, 2, 237–253.CrossRefGoogle Scholar
  31. Kiniry, J. R., Willians, J. R., Vanderlip, R. L., Atwood, J. D., Reicosky, D. C., Mulliken, J., et al. (1997). Evaluation of two maize models for nine US locations. Agronomy Journal, 89, 421–426.CrossRefGoogle Scholar
  32. Knutti, R., Abramowitz, G., Collins, M., Eyring V., Gleckler, P. J., Hewitson, B. & Mearns, L. (2010). Good practice guidance paper on assessing and combining multi model climate projections. Intergovernmental Panel on Climate Change—IPPC Expert Meeting on Assessing and Combining Multi Model Climate Projections, Colorado.Google Scholar
  33. Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., et al. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21, 1328–1341.CrossRefPubMedGoogle Scholar
  34. Liu, H. L., Yang, J. Y., Drury, C. F., Reynolds, W. D., Tan, C. S., Bai, Y. L., et al. (2010). Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutrient Cycling in Agroecossystems, 89, 313–328.CrossRefGoogle Scholar
  35. Liu, Z., Yang, X., Hubbard, K. G., & Lin, X. (2012). Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 18, 3441–3454.CrossRefGoogle Scholar
  36. Lopez, J. R., Erickson, J. E., Asseng, S., & Bobeda, E. L. (2017). Modification of the CERES grain sorghum model to simulate optimum sweet sorghumrooting depth for rainfed production oc coarse textured soils in a sub-tropical environment. Agricultural Water Management, 181, 47–55.CrossRefGoogle Scholar
  37. Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rotter, R. P., et al. (2014). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21, 911–925.CrossRefPubMedGoogle Scholar
  38. Monteiro, L. A. (2015). Sugarcane yield gap in Brazil: a crop modeling approach. University of São Paulo. PhD. Thesis.Google Scholar
  39. Monteiro, J. E. B. A., Assad, E. D., Sentelhas, P. C., & Azevedo, L. C. (2017). Modeling of corn yield in Brazil as a function of meteorological conditions and technological level. Pesquisa Agropecuaria Brasileira, 52, 137–148.CrossRefGoogle Scholar
  40. Monteiro, L. A., & Sentelhas, P. C. (2017). Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model? Crop & Pasture Science, 68, 272–284.CrossRefGoogle Scholar
  41. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B, 281, 277–294.CrossRefGoogle Scholar
  42. Negm, L. M., Youssef, M. A., & Jaynes, D. B. (2017). Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa. Agricultural Water Management, 187, 57–68.CrossRefGoogle Scholar
  43. Palosuo, T., Kersebaum, K. C., Angulo, C., Hilavinka, P., Moriondo, M., Olesen, J. E., et al. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison, of eight crop growth models. European Journal Agronomy, 35, 103–114.CrossRefGoogle Scholar
  44. Peak, A. S., Robertson, M. J., & Bidstrup, R. J. (2008). Optimizing maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Australian Journal of Experimental Agriculture, 48, 313–325.CrossRefGoogle Scholar
  45. Piccini, G., Ko, J., Marek, T., & Howell, T. (2009). Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum. Agricultural Water Management, 96, 1698–1704.CrossRefGoogle Scholar
  46. Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evapotranspiration, using large scale parameters. Monthly Weather Review, 100, 81–92.CrossRefGoogle Scholar
  47. Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org. (2019).
  48. Raes, D., Geerts, S., Kipkorir, E., Wellens, J., & Shali, A. (2006). Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management, 81, 335–357.CrossRefGoogle Scholar
  49. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  50. Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8, 1204–1213.CrossRefGoogle Scholar
  51. Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., et al. (2013). The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultual and Forest Meteorology, 170, 166–182.CrossRefGoogle Scholar
  52. Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A. C., & Nendel, C. (2015). The soybean yield gap in Brazil—magnitude, causes and possible solutions for suitainable production. Journal of Agriculture and Science, 158, 1394–1411.CrossRefGoogle Scholar
  53. Shioga, P. S., Gerage, A. C., Araújo, P. M., Bianco, R. (2012). Avaliação estadual de cultivares de milho segunda safra 2012. IAPAR Technical Bulletin nº78, 7-114.Google Scholar
  54. Shioga, P. S., Gerage, A. C., Araújo, P. M., Sera, G. H. (2010). Avaliação estadual de cultivares de milho safra 2009/2010. IAPAR Technical Bulletin no. 69, 7–112.Google Scholar
  55. Shrestha, S., Champagain, R., & Babel, M. S. (2017). Quantifying the impact of climate change on crop yield and water footprint on rice in the Nam Oon irrigation Project, Thailand. Science of the Total Environmet, 599–600, 689–699.CrossRefGoogle Scholar
  56. Singh, P. K., Singh, K. K., Bhan, S. C., Baxla, A. K., Singh, S., Rathore, L. S., et al. (2017). Impact of projected climat change on rice (Oryza sativa L.) yield using CERES-rice model in a diferente agroclimatic zones of India. Current Science, 112, 108–115.CrossRefGoogle Scholar
  57. Soler, C. M. T., Sentelhas, P. C., & Hoogenboon, G. (2010). The impact of El Niño Southern Oscillation phases on off-season maize yield for a subtropical region of Brazil. International Journal of Climatology, 30, 1056–1066.Google Scholar
  58. Souza, R. F., Barros, A. C., Barros, A. H. C., & Tabosa, J. N. (2014). Estimates for maize yield (Zea mays L.) in rainfed and irrigated crops determined by the method of Agroecological Zone/FAO (MZA/FAO), state of Alagoas. Brazil. Revista Brasileira de Agricultura Irrigada, 8, 127–138.CrossRefGoogle Scholar
  59. Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. (2012). Crop yield response to water. Rome, FAO (Irrigation and Drainage Paper 66).Google Scholar
  60. Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Publications in Climatology. New Jersey: Drexel Institute of Technology.Google Scholar
  61. Wallach, D., Mearns, L. O., Ruane, A. C., Rotter, R. P., & Asseng, S. (2016). Lessons for climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139, 551–564.CrossRefGoogle Scholar
  62. Wang, J., Wang, E., Yang, X., Zhang, F., & Yin, H. (2012). Increased yield potential of wheat-maize cropping system in the north China plain by climate change adaptation. Climatic Change, 113, 825–840.CrossRefGoogle Scholar
  63. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.CrossRefGoogle Scholar
  64. Xavier, A. C., King, C. W., & Scanlon, B. R. (2016). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatolology, 36, 2644–2659.  https://doi.org/10.1002/joc.4518.CrossRefGoogle Scholar
  65. Yin, X., Kersebaumb, K. C., Kollas, C., Manevskia, K., Baby, S., Beaudoin, N., et al. (2017). Performance of process-based models for simulation of grain N in crop rotation across Europe. Agricultural Systems, 154, 63–77.CrossRefGoogle Scholar
  66. Zhang, L., Walker, G. R., & Dawes, W. R. (2002). Water balance modeling: concepts and applications. In T. R. Mecvicar, L. Rui, J. Walker, R. W. Fitzpatrick, & L. Changming (Eds.), Regional water and soil assessment for managing sustainable agriculture in China and Australia. Adelaide: CISRO.Google Scholar
  67. Zhang, Y. & Zhao, Y. (2017). Ensemble yield simulation: using heat-tolerant and later-maturing varieties to adapt to climate warming. PLos One, 12, e(0176766).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biosystems Engineering, Agricultural College Luiz de Queiroz (ESALQ)University of São PauloPiracicabaBrazil

Personalised recommendations