Advertisement

Stochastic Estimation of Potential and Depleted Productivity of Soybean Grain and Oil

  • Marcelo Rodrigues Alambert
  • Renan Caldas UmburanasEmail author
  • Felipe Schwerz
  • Klaus Reichardt
  • Durval Dourado-Neto
Research

Abstract

Soybean is one of the most important food crops around the world. Despite its economic importance, the effect of sowing date and climatic conditions on soybean development and productivity of grain and oil has not yet been studied in detail. Such a study can yield valuable information regarding the interaction of this crop with its environment. In this context, the aim of this study was to estimate the soybean potential productivity of grains and oil for eight sowing dates, using historical series of climate data from Piracicaba (SP), Brazil. For this a stochastic model is proposed, with truncated normal distribution for maximum, minimum and average temperature data. The information generated in this study is important in order to provide farmers with relevant information about the importance of an adequate sowing date, as well as to further understand of the influence of the climate variations on soybean production. The September 1 sowing date, without lack of water, provides more adequate conditions for accumulated dry matter, grain and oil productivity. It was concluded that: (i) the stochastic model (Potential and Depleted Model for Soybean Grain and Oil Production) can be used as a valuable tool for analyzing variability and complex interactions between plants and climate conditions. In this model, the air temperature and global radiation parameters were adequate to estimate the duration of the crop cycle, dry matter production, photoassimilates partition, and grain and oil productivity of soybean plants grown in different sowing dates in Piracicaba–SP; (ii) considering the historical data of air temperature, global radiation and other optimal ecophysiological needs for the crop, the model results define September as best period for sowing soybean in Piracicaba (SP), Brazil.

Keywords

Climate parameters Crop growth models Photoassimilates partition Sowing date 

Notes

Acknowledgements

We acknowledge funding from the São Paulo Research Foundation (FAPESP)—Grant no. 2016/06310-0 and 2017/24059-5 and thank financial support from Coordination for the Improvement of Higher Education Personnel (CAPES) and from National Counsel of Technological and Scientific Development (CNPq)—Grant no. 140209/2015-8).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Board, J. E., & Harville, B. G. (1992). Explanation for greater light interception in narrow-vs. Wide-row. Crop Science.  https://doi.org/10.2135/cropsci1992.0011183X003200010041x.Google Scholar
  2. Bouman, B. A. M., Van Keulen, H., Van Laar, H. H., & Rabbinge, R. (1996). The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agricultural Systems.  https://doi.org/10.1016/0308-521X(96)00011-X.Google Scholar
  3. Bressan, G. (2002). Modelagem e simulação de sistemas computacionais (p. 12). São Paulo: LarcPCS/EPUSP, IME/USP.Google Scholar
  4. CONAB. Companhia Nacional de Abastecimento. (2017). Acompanhamento da safra brasileira de grãos. 2016/2017. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_12_22_12_08_27_boletim_graos_dezembro_2016.pdf. Accessed 15 Jan 2018.
  5. Confalone, A., & Navarro, M. D. (1999). Influência do “déficit” hídrico sobre a eficiência da radiação solar em soja. Revista Brasileira de Agrociência.  https://doi.org/10.1016/0308-521X(96)00011-X.Google Scholar
  6. De Bruin, J. L., & Pedersen, P. (2008). Soybean seed yield response to planting date and seeding rate in the upper Midwest. Agronomy Journal.  https://doi.org/10.2134/agronj2007.0115.Google Scholar
  7. Dourado Neto, D., Teruel, D. A., Reichardt, K., Nielsen, D. R., Frizzone, J. A., & Bacchi, O. O. S. (1998). Principles of crop modeling and simulation: I. Uses of mathematical models in agricultural science. Scientia Agricola.  https://doi.org/10.1590/S0103-90161998000500008.Google Scholar
  8. Eaton, J. & Kortum, S. (2002) Technology, Geography, and Trade. Econometrica.  https://doi.org/10.1111/1468-0262.00352.Google Scholar
  9. Egli, D. B., & Cornelius, P. L. (2009). A regional analysis of the response of soybean yield to planting date. Agronomy Journal.  https://doi.org/10.2134/agronj2008.0148.Google Scholar
  10. Embrapa. Empresa Brasileira de Pesquisa Agropecuária. (2007). Instalação da lavoura de soja: época, cultivares, espaçamento e população de plantas. CNPSO–Centro Nacional de Pesquisa de Soja. http://www.cnpso.embrapa.br/download/cirtec/circtec51.pdf. Accessed 30 Jan 2018.
  11. Embrapa. (2005). Empresa Brasileira de Pesquisa Agropecuária. Tecnologias de Produção de Soja—Região Central do Brasil—2006 (p. 220). (Sistemas de Produção/Embrapa Soja, 9).Google Scholar
  12. FAO. (2019). Crops and livestock products. http://www.fao.org/faostat/en/#data/TP . Accessed 5 Feb 2019.
  13. Fatichin, S., Zheng, H., Narasaki, K., & Arima, S. (2013). Genotypic adaptation of soybean to late sowing in Southwestern Japan. Plant Production Science.  https://doi.org/10.1626/pps.16.123.Google Scholar
  14. Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development (p. 81p). Iowa: Agricultural Experimental Station.Google Scholar
  15. Hofstra, G. (1972). Response of soybeans to temperature under high light intensities. Canadian Journal of Plant Science.  https://doi.org/10.4141/cjps72-084.Google Scholar
  16. Izquierdo, N. G., Aguirrezábal, L. A. N., Andrade, F. H., Geroudet, C., Valentinuz, O., & Pereyra Iraola, M. (2009). Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crops Research.  https://doi.org/10.1016/j.fcr.2009.07.007.Google Scholar
  17. Koester, R. P., Skonecza, J. A., Cary, T. R., Diers, B. W., & Ainsworth, E. A. (2014). Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. Journal of Experimental Botany.  https://doi.org/10.1093/jxb/eru187.Google Scholar
  18. Leadley, P. W., Reynolds, J. F., Flagler, R., & Heagle, A. S. (1990). Radiation utilization efficiency and the growth of soybeans exposed to ozone: A comparative analysis. Agricultural and Forest Meteorology.  https://doi.org/10.1016/0168-1923(90)90114-L.Google Scholar
  19. Maia, A. D. H. N., & Dourado Neto, D. (2004). Probabilistic tools for assessment of pest resistance risk associated to insecticidal transgenic crops. Scientia Agricola.  https://doi.org/10.1590/S0103-90162004000500003.Google Scholar
  20. Marin, F. R., Ribeiro, R. V., & Marchiori, P. E. (2014). How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane. Theoretical and Experimental Plant Physiology.  https://doi.org/10.1007/s40626-014-0006-2.Google Scholar
  21. Martins, K. V., Dourado-Neto, D., Reichardt, K., de Jong van Lier, Q., Favarin, J. L., Sartori, F. F., et al. (2017). Preliminary studies to characterize the temporal variation of micronutrient composition of the above ground organs of maize and correlated uptake rates. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2017.01482.Google Scholar
  22. Meotti, G. V., Benin, G., Silva, R. R., Beche, E., & Munaro, L. B. (2012). Sowing dates and agronomic performance of soybean cultivars. Pesquisa Agropecuaria Brasileira.  https://doi.org/10.1590/S0100-204X2012000100003.Google Scholar
  23. Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology.  https://doi.org/10.2307/2401901.Google Scholar
  24. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 181, 277–294.  https://doi.org/10.1098/rstb.1977.0140.CrossRefGoogle Scholar
  25. Muchow, R. C., Robertson, M. J., & Pengelly, B. C. (1993). Radiation use efficiency of soybean, mungbean and cowpea under different environmental conditions. Field Crops Research.  https://doi.org/10.1016/0378-4290(93)90017-H.Google Scholar
  26. Müller, M., Rakocevic, M., Caverzan, A., & Chavarria, G. (2017). Grain yield differences of soybean cultivars due to solar radiation interception. American Journal of Plant Sciences.  https://doi.org/10.4236/ajps.2017.811189.Google Scholar
  27. Oliva, M. L., Shannon, J. G., Sleper, D. A., Ellersieck, M. R., Cardinal, A. J., Paris, R. L., et al. (2006). Stability of fatty acid profile in soybean genotypes with modified seed oil composition. Crop Science.  https://doi.org/10.2135/cropsci2005.12.0474.Google Scholar
  28. Penning De Vries, F. W. T., Jansen, D. M., Ten Berge, H. F. M., & Bakema, A. (1989). Simulation of ecophysiological processes of growth in several annual crops (p. 271). Wageningen: Centre for Agricultural Publishing and Documentation (Pudoc).Google Scholar
  29. Petter, F. A., Da Silva, J. A., Zuffo, A. M., Andrade, F. R., Pacheco, L. P., & De Almeida, F. A. (2016). Does high seeding density increase soybean productivity? Photosynthetically active radiation responses (abstract in English, text in Portuguese). Bragantia.  https://doi.org/10.1590/1678-4499.447.Google Scholar
  30. Pierozan-Junior, C., Kawakami, J., Schwarz, K., Umburanas, R. C., Del Conte, M. V., & Müller, M. M. L. (2017). Sowing dates and soybean cultivars influence seed yield, oil and protein contents in subtropical environment. Journal of Agricultural Science.  https://doi.org/10.5539/jas.v9n6p188.Google Scholar
  31. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One.  https://doi.org/10.1371/journal.pone.0066428.Google Scholar
  32. Rochette, P., Desjardins, R. L., Pattey, E., & Lessard, R. (1996). Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agronomy Journal.  https://doi.org/10.2134/agronj1996.00021962008800040022x.Google Scholar
  33. Santos, J. B., Procópio, S. O., Silva, A. A., & Costa, L. C. (2003) Capture and utilization of solar radiation by the soybean and common bean crops and by weeds. Bragantia.  https://doi.org/10.1590/S0006-87052003000100018.Google Scholar
  34. Setiyono, T. D., Weiss, A., Specht, J., Bastidas, A. M., Cassman, K. G., & Dobermann, A. (2007). Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crops Research.  https://doi.org/10.1016/j.fcr.2006.07.011.Google Scholar
  35. Sinclair, T. R. (1991). Predicting carbon assimilation and crop radiation-use efficiency dependence on leaf nitrogen content. In K. J. Boote & R. S. Loomis (Eds.), Modeling crop photosynthesis—From biochemistry to canopy (pp. 75–94). Madison: American Society of Agronomy; Crop Science Society of America.Google Scholar
  36. Sinclair, T. R., & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy.  https://doi.org/10.1016/S0065-2113(08)60914-1.Google Scholar
  37. Sinclair, T. R., Shiraiwa, T., & Hammer, G. L. (1992). Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Science, 32, 1281–1284.  https://doi.org/10.2135/cropsci1992.0011183X003200050043x.CrossRefGoogle Scholar
  38. Spaeth, S. C., Randall, H. C., Sinclair, T. R., & Vendeland, J. S. (1984). Stability of soybean harvest index 1. Agronomy Journal.  https://doi.org/10.2134/agronj1984.00021962007600030028x.Google Scholar
  39. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Plant physiology (Portuguese version) (6th ed., p. 888). Porto Alegre: Artmed.Google Scholar
  40. Umburanas, R. C., Yokoyama, A. H., Balena, L., Lenhani, G. C., Moraes, Teixeira A., Krüger, R. L., et al. (2018). Sowing dates and seeding rates affect soybean grain composition. International Journal of Plant Production.  https://doi.org/10.1007/s42106-018-0018-y.Google Scholar
  41. Umburanas, R. C., Yokoyama, A. H., Balena, L., Dourado-Neto, D., Teixeira, W. F., Zito, R. K., et al. (2019). Soybean yield in diferent sowing dates and seeding rates in a subtropical environment. International Journal of Plant Production.  https://doi.org/10.1007/s42106-019-00040-0.Google Scholar
  42. Van Heerden, P. D. R., Donaldson, R. A., Watt, D. A., & Singels, A. (2010). Biomass accumulation in sugarcane: Unraveling the factors underpinning reduced growth phenomena. Journal of Experimental Botany.  https://doi.org/10.1093/jxb/erq144.Google Scholar
  43. Wu, Y. S., Yang, F., Gong, W. Z., Shoaib, A., Fan, Y. F., & Wu, X. L. (2017). Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture.  https://doi.org/10.1016/S2095-3119(16)61525-3.Google Scholar
  44. Zuil, S. G., Izquierdo, N. G., Luján, J., Cantarero, M., & Aguirrezábal, L. A. N. (2012). Oil quality of maize and soybean genotypes with increased oleic acid percentage as affected by intercepted solar radiation and temperature. Field Crops Research.  https://doi.org/10.1016/j.fcr.2011.11.019.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Luiz de Queiroz College of Agriculture (ESALQ)University of São Paulo (USP)PiracicabaBrazil
  2. 2.Center of Nuclear Energy in Agriculture (CENA)University of São Paulo (USP)PiracicabaBrazil

Personalised recommendations