Skip to main content
Log in

Wenn die Knochen brüchig werden

Osteoporose: Oberstes Ziel ist die Vermeidung von Frakturen

  • Zertifizierte Fortbildung
  • Published:
Geriatrie-Report

Zusammenfassung

Vitamin-D-Mangel, Medikamente, Multimorbidität — im Alter häufen sich die Risikofaktoren für osteoporotische Knochenbrüche. Insbesondere für ältere Menschen sind Frakturen ein einschneidendes Erlebnis, dass nicht selten zu Immobilität oder Pflegebedürftigkeit führt. Um ein erhöhtes Risiko frühzeitig zu erkennen und adäquat reagieren zu können, sollte der Hausarzt die richtigen Fragen stellen und die Warnzeichen für drohende Knochenbrüche kennen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Jakob F, Seefried L, Schwab M. [Age and osteoporosis. Effects of aging on osteoporosis, the diagnostics and therapy]. Der Internist. 2014;55(7):755–61.

    Article  CAS  PubMed  Google Scholar 

  2. Van Der Klift M, Pols HA, Geleijnse JM, Van Der Kuip DA, Hofman A, De Laet CE. Bone mineral density and mortality in elderly men and women: the Rotterdam Study. Bone. 2002;30(4):643–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hadji P, Klein S, Gothe H, Haussler B, Kless T, Schmidt T, et al. The epidemiology of osteoporosis—Bone Evaluation Study (BEST): an analysis of routine health insurance data. Deutsches Arzteblatt international. 2013;110(4):52–7

    PubMed  PubMed Central  Google Scholar 

  4. Jakob F, Seefried L, Ebert R. [Pathophysiology of bone metabolism]. Der Internist. 2008;49(10):1159–60, 62, 64 passim.

    Article  CAS  PubMed  Google Scholar 

  5. Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. Journal of cellular biochemistry. 2007;102(5):1130–9.

    Article  CAS  PubMed  Google Scholar 

  6. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457–84.

    Article  CAS  Google Scholar 

  7. DVO. Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE bei postmenopausalen Frauen und bei Männern 2017 [cited 2019 2 May]. Available from: https://www.dv-osteologie.org/uploads/Leitlinie%202017/Finale%20Version%20Leitlinie%20Osteoporose%202017_end.pdf.

  8. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15(3):175–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  10. Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, et al. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone. 2003;33(4):505–13.

    Article  PubMed  Google Scholar 

  11. Eklund F, Nordstrom A, Bjornstig U, Nordstrom P. Bone mass, size and previous fractures as predictors of prospective fractures in an osteoporotic referral population. Bone. 2009;45(4):808–13.

    Article  PubMed  Google Scholar 

  12. Franca Genest LS. Süße Knochen brechen leichter. Der Allgemeinarzt 2018;40 (17) Seite 34–8.

    Google Scholar 

  13. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nature reviews Endocrinology. 2017;13(4):208–19.

    Article  CAS  PubMed  Google Scholar 

  14. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91(9):3404–10.

    Article  CAS  PubMed  Google Scholar 

  15. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27(5):319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farr JN, Zhang W, Kumar SK, Jacques RM, Ng AC, McCready LK, et al. Altered cortical microarchitecture in patients with monoclonal gammopathy of undetermined significance. Blood. 2014;123(5):647–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drake MT. unveiling skeletal fragility in patients diagnosed with MGUS: no longer a condition of undetermined significance? J Bone Miner Res. 2014;29(12):2529–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seppala LJ, van der Velde N, Masud T, Blain H, Petrovic M, van der Cammen TJ, et al. EuGMS Task and Finish group on Fall-Risk-Increasing Drugs (FRIDs): Position on Knowledge Dissemination, Management, and Future Research. Drugs Aging. 2019;36(4):299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Picca A, Calvani R, Manes-Gravina E, Spaziani L, Landi F, Bernabei R, et al. Bone-Muscle Crosstalk: Unraveling New Therapeutic Targets for Osteoporosis. Current pharmaceutical design. 2017;23(41):6256–63.

    Article  CAS  PubMed  Google Scholar 

  20. Wagner P, Chapurlat R, Ecochard R, Szulc P. Low Muscle Strength and Mass Is Associated With the Accelerated Decline of Bone Microarchitecture at the Distal Radius in Older Men: the Prospective STRAMBO Study. J Bone Miner Res. 2018;33(9):1630–40.

    Article  PubMed  Google Scholar 

  21. Jain RK, Vokes T. Dual-energy X-ray Absorptiometry. Journal of clinical densitometry: the official journal of the International Society for Clinical Densitometry. 2017;20(3):291–303.

    Article  Google Scholar 

  22. Lewiecki EM. Bone densitometry and vertebral fracture assessment. Current osteoporosis reports. 2010;8(3):123–30.

    Article  PubMed  Google Scholar 

  23. Flicker L, Mead K, MacInnis RJ, Nowson C, Scherer S, Stein MS, et al. Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc. 2003;51(11):1533–8.

    Article  PubMed  Google Scholar 

  24. Garnero P, Munoz F, Sornay-Rendu E, Delmas PD. Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study. Bone. 2007;40(3):716–22.

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, et al. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. J Clin Endocrinol Metab. 2004;89(11):5477–81.

    Article  CAS  PubMed  Google Scholar 

  26. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  27. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res. 2004;19(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  28. Saita Y, Ishijima M, Kaneko K. Atypical femoral fractures and bisphosphonate use: current evidence and clinical implications. Therapeutic advances in chronic disease. 2015;6(4):185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267–94.

    Article  PubMed  Google Scholar 

  30. Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  31. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23.

    Article  CAS  PubMed  Google Scholar 

  32. Watts NB, Brown JP, Papapoulos S, Lewiecki EM, Kendler DL, Dakin P, et al. Safety Observations With 3 Years of Denosumab Exposure: Comparison Between Subjects Who Received Denosumab During the Randomized FREEDOM Trial and Subjects Who Crossed Over to Denosumab During the FREEDOM Extension. J Bone Miner Res. 2017;32(7):1481–5.

    Article  CAS  PubMed  Google Scholar 

  33. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  34. Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guanabens N, et al. Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone. 2017;105:11–7.

    Article  PubMed  Google Scholar 

  35. Leder BZ. Optimizing Sequential and Combined Anabolic and Antiresorptive Osteoporosis Therapy. JBMR Plus. 2018;2(2):62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leder BZ, Tsai JN, Jiang LA, Lee H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: The Denosumab and Teriparatide Follow-up study (DATA-Follow-up). Bone. 2017;98:54–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, Ebeling PR, Adachi JD, Miyauchi A, et al. One Year of Romosozumab Followed by Two Years of Denosumab Maintains Fracture Risk Reductions: Results of the FRAME Extension Study. J Bone Miner Res. 2019;34(3):419–28.

    Article  CAS  PubMed  Google Scholar 

  38. McClung MR. Romosozumab for the treatment of osteoporosis. Osteoporos Sarcopenia. 2018;4(1):11–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93.

    Article  PubMed  Google Scholar 

  40. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016;375(16):1532–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Genest MA.

Additional information

Interessenkonflikt

Dr. Lothar Seefried gibt Vortrags-/Beratungshonorare von den Firmen Alexion, Abbvie, Amgen, Kyowa Kirin, Lilly, medi, MSD, Novartis, UCB und Servier sowie Unterstützung für Forschungsprojekte durch die Firmen Alexion und Novartis an. Dr. Franca Genest gibt Vortragshonorare von den Firmen Alexion, Lilly, Abbvie an.

Der Verlag erklärt, dass die inhaltliche Qualität des Beitrags von zwei unabhängigen Gutachtern geprüft wurde. Werbung in dieser Zeitschriftenausgabe hat keinen Bezug zur CME-Fortbildung. Der Verlag garantiert, dass die CME-Fortbildung sowie die CME-Fragen frei sind von werblichen Aussagen und keinerlei Produktempfehlungen enthalten. Dies gilt insbesondere für Präparate, die zur Therapie des dargestellten Krankheitsbildes geeignet sind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genest, F., Seefried, L. Osteoporose: Oberstes Ziel ist die Vermeidung von Frakturen. Geriatr Rep 14, 40–47 (2019). https://doi.org/10.1007/s42090-019-0179-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42090-019-0179-6

Navigation