Advertisement

Optimal terminal-time determination for the ZEM/ZEV feedback guidance law with generalized performance index

  • Jaemyung AhnEmail author
  • Pengyu Wang
  • Yanning Guo
  • Bong Wie
Research Article
  • 10 Downloads

Abstract

This paper investigates a problem of determining the optimal terminal-time or time-to-go of the ZEM/ZEV (Zero-Effort-Miss/Zero-Effort-Velocity) feedback guidance law for a variety of orbital intercept or rendezvous maneuvers. A generalized ZEM/ZEV guidance problem, whose objective is to minimize a combination of the control energy and terminal time, is examined. Algebraic equations whose solution provides the optimal terminal-time of the orbital intercept/rendezvous problems are derived based on the optimal control theory. The effectiveness of the proposed approach is demonstrated for various orbital maneuver problems.

Keywords

Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal feedback guidance terminal-time determination intercept rendezvous 

Notes

Acknowledgements

This work was prepared under a research grant from the National Research Foundation of Korea (NRF-2013M1A3A3A02042461). The authors thank the National Research Foundation of Korea for the support of this research work.

References

  1. [1]
    Ebrahimi, B., Bahrami, M., Roshanian, J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers. Acta Astronautica, 2008, 62(10–11): 556–562.CrossRefGoogle Scholar
  2. [2]
    Furfaro, R., Selnick, S., Cupples, M. L., Cribb, M. W. Non-linear sliding guidance algorithms for precision lunar landing. In: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, 2011.Google Scholar
  3. [3]
    Guo, Y. N., Hawkins, M., Wie, B. Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 810–820.CrossRefGoogle Scholar
  4. [4]
    Guo, Y. N., Hawkins, M., Wie, B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for mars landing. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 799–809.CrossRefGoogle Scholar
  5. [5]
    Ahn, J., Guo, Y. N., Wie, B. Precision ZEM/ZEV feedback guidance algorithm utilizing Vinti’s analytic solution of perturbed Kepler problem. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2013.Google Scholar
  6. [6]
    Wang, P., Guo, Y., Wie, B. Orbital rendezvous performance comparison of differential geometric and ZEM/ZEV feedback guidance laws. In: Proceedings of the 4th IAA Conference on Dynamics and Control of Space Systems, 2018, 21–23.Google Scholar
  7. [7]
    Bate, R. R., Mueller, D. D., White, J. E. Fundamentals of Astrodynamics. Dover Publications, 1971, 177–222.Google Scholar
  8. [8]
    Vallado, D. A. Fundamentals of Astrodynamics and Applications, 3rd ed. Springer, 2007, 87–103.Google Scholar
  9. [9]
    D’Souza, C. N. An optimal guidance law for planetary landing. AIAA-97-3709, AIAA, 1997, DOI:  https://doi.org/10.2514/6.1997-3709.Google Scholar
  10. [10]
    Battin, R. H. An introduction to the mathematics and methods of astrodynamics, revised edition, AIAA, 1999, 558–566.Google Scholar
  11. [11]
    Bryson, Jr. A. E., Ho, Y. Applied Optimal Control. Halsted Press, 1975.Google Scholar
  12. [12]
    Liberzon, D. Calculus of Variations and Optimal Control theory. Princeton University Press, 2012, 86–88.Google Scholar
  13. [13]
    Vinti, J. P., Der, G. J., Bonavito, N. L. Orbital and celestial mechanics, AIAA, 1998, 75–106.Google Scholar
  14. [14]
    DerAstrodynamics. https://doi.org/derastrodynamics.com (accessed May 4, 2018).
  15. [15]
    Patterson, M. A., Rao, A. V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using Hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software, 2014, 41(1): 1.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Palmer, P. Optimal relocation of satellites flying in near-circular-orbit formations. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 519–526.MathSciNetCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Jaemyung Ahn
    • 1
    Email author
  • Pengyu Wang
    • 2
  • Yanning Guo
    • 2
  • Bong Wie
    • 3
  1. 1.Department of Aerospace EngineeringKAISTDaejeonRepublic of Korea
  2. 2.Department of Control Science and EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Department of Aerospace EngineeringIowa State UniversityAmesUSA

Personalised recommendations