Advertisement

Hilft eine Unterstützung der Anstrengungsregulation, das Lernen mit statischen und dynamischen Visualisierungen zu verbessern?

  • Emely HochEmail author
  • Katharina Scheiter
  • Peter Gerjets
Allgemeiner Teil
  • 139 Downloads

Zusammenfassung

Das Lernen mit dynamischen (im Vergleich zu statischen) Visualisierungen stellt zusätzliche Verarbeitungsanforderungen an Lernende. Demnach sollte untersucht werden, ob eine Unterstützung der Anstrengungsregulation den Lernerfolg verbessert und zu stärkeren positiven Effekten führt, wenn mit dynamischen Visualisierungen gelernt wird, im Vergleich zum Lernen mit statischen Visualisierungen. Dazu wurden Studierende vor dem Lernen entweder mit einem Vorsatz (Wenn-Dann-Plan) zur Anstrengungsregulation oder einer entsprechenden Verhaltensaufforderung instruiert; Probanden in der Kontrollgruppe erhielten keine Unterstützung (Experiment 1; N = 219). Die Lernleistung wurde von den Unterstützungsmaßnahmen jedoch nicht positiv beeinflusst, Verhaltensaufforderungen führten sogar zu einer Leistungsabnahme. Auch Vorsätze, die die Anstrengung gezielt auf die Visualisierung oder auf den Text lenkten, beeinflussten die Lernleistung nicht (Experiment 2; N = 153). Dies war unabhängig davon, ob die Visualisierung in statischem oder dynamischem Format dargeboten wurde. Ob Anstrengungsregulation ein automatischer Prozess ist, der sich vorsätzlicher Kontrolle entzieht, bleibt zu klären.

Schlüsselwörter

Multimedia Vorsätze Anstrengungsregulation Dynamische Visualisierung Statische Visualisierung 

Does supporting effort regulation help to improve learning with static and dynamic visualizations?

Abstract

Learning with dynamic (compared to static) visualizations imposes additional processing requirements onto learners. Accordingly, it was investigated whether support of effort regulation improves learning outcome and leads to stronger positive effects when learning with dynamic visualizations compared to learning with static visualizations. Therefore, students were instructed before learning either with an implementation intention (if-then-plan) for effort regulation or with a corresponding prompt; participants in the control group were not supported (experiment 1; N = 219). However, learning performance was not positively influenced by the support measures, the prompt of conduct even led to a decline in learning performance. Also, implementation intentions that instructed learners to direct their effort towards either the visualization or the text did not influence the learning performance (experiment 2; N = 153). This was independent of presenting the visualization in static or dynamic format. Whether effort regulation is an automatic process that cannot be deliberately controlled remains to be clarified.

Keywords

Multimedia Implementation intentions Regulation of effort Dynamic visualization Static visualization 

Notes

Förderung

Die Studie wurde von der Deutschen Forschungsgemeinschaft im Rahmen eines Projekts der Forschergruppe „Analyse und Förderung effektiver Lehr-Lernprozesse“ gefördert (SCHE683/5-2; Antragsteller: Katharina Scheiter und Peter Gerjets).

Literatur

  1. Aarts, H., Dijksterhuis, A. P., & Midden, C. (1999). To plan or not to plan? Goal achievement or interrupting the performance of mundane behaviors. European Journal of Social Psychology, 29, 971–979.  https://doi.org/10.1002/(sici)1099-0992(199912)29:8%3C971::aid-ejsp963%3E3.0.co;2-a.CrossRefGoogle Scholar
  2. Achtziger, A., Gollwitzer, P. M., & Sheeran, P. (2008). Implementation intentions and shielding goal striving from unwanted thoughts and feelings. Personality and Social Psychology Bulletin, 34, 381–393.  https://doi.org/10.1177/0146167207311201.CrossRefGoogle Scholar
  3. Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14, 241–255.  https://doi.org/10.1016/j.learninstruc.2004.06.002.CrossRefGoogle Scholar
  4. Ajzen, I., Czasch, C., & Flood, M. G. (2009). From intentions to behavior: Implementation intention, commitment, and conscientiousness. Journal of Applied Social Psychology, 39, 1356–1372.  https://doi.org/10.1111/j.1559-1816.2009.00485.x.CrossRefGoogle Scholar
  5. Ayres, P., & Paas, F. (2007). Can the cognitive load approach make instructional animations more effective? Applied Cognitive Psychology, 21, 811–820.  https://doi.org/10.1002/acp.1351.CrossRefGoogle Scholar
  6. Bannert, M. (2009). Promoting self-regulated learning through prompts. Zeitschrift für Pädagogische Psychologie, 23, 139–145.  https://doi.org/10.1024/1010-0652.23.2.139.CrossRefGoogle Scholar
  7. Bayer, U. C., & Gollwitzer, P. M. (2007). Boosting scholastic test scores by willpower: The role of implementation intentions. Self and Identity, 6, 1–19.  https://doi.org/10.1080/15298860600662056.CrossRefGoogle Scholar
  8. Bayer, U. C., Achtziger, A., Gollwitzer, P. M., & Moskowitz, G. B. (2009). Responding to subliminal cues: Do if-then plans facilitate action preparation and initiation without conscious intent? Social Cognition, 27, 183–201.  https://doi.org/10.1521/soco.2009.27.2.183.CrossRefGoogle Scholar
  9. Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150–167.  https://doi.org/10.1016/j.compedu.2016.06.005.CrossRefGoogle Scholar
  10. Brandstätter, V., Lengfelder, A., & Gollwitzer, P. M. (2001). Implementation intentions and efficient action initiation. Journal of Personality and Social Psychology, 81, 946–960.  https://doi.org/10.1037/0022-3514.81.5.946.CrossRefGoogle Scholar
  11. Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl. S. 174–205). New York: Cambridge University Press.CrossRefGoogle Scholar
  12. Castro-Alonso, J. C., Ayres, P., & Paas, F. (2016). Comparing apples and oranges? A critical look at research on learning from statics versus animations. Computers & Education, 102, 234–243.  https://doi.org/10.1016/j.compedu.2016.09.004.CrossRefGoogle Scholar
  13. Castro-Alonso, J. C., Ayres, P., Wong, M., & Paas, F. (2018). Learning symbols from permanent and transient visual presentations: Don’t overplay the hand. Computers & Education, 116, 1–13.  https://doi.org/10.1016/j.compedu.2017.08.011.CrossRefGoogle Scholar
  14. Chapman, J., Armitage, C. J., & Norman, P. (2009). Comparing implementation intention interventions in relation to young adults’ intake of fruit and vegetables. Psychology and Health, 24, 317–332.  https://doi.org/10.1080/08870440701864538.CrossRefGoogle Scholar
  15. Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25, 315–324.  https://doi.org/10.1016/j.chb.2008.12.020.CrossRefGoogle Scholar
  16. Duckworth, A. L., Grant, H., Loew, B., Oettingen, G., & Gollwitzer, P. M. (2011). Self-regulation strategies improve self-discipline in adolescents: Benefits of mental contrasting and implementation intentions. Educational Psychology, 31, 17–26.  https://doi.org/10.1080/01443410.2010.506003.CrossRefGoogle Scholar
  17. Gerjets, P., Scheiter, K., & Cierniak, G. (2009). The scientific value of cognitive load theory: A research agenda based on the structuralist view of theories. Educational Psychology Review, 21, 43–54.  https://doi.org/10.1007/s10648-008-9096-1.CrossRefGoogle Scholar
  18. Gerjets, P., Scheiter, K., & Schorr, T. (2003). Modeling processes of volitional action control in multiple-task performance: How to explain effects of goal competition and task difficulty on processing strategies and performance within ACT-R. Cognitive Science Quarterly, 3, 355–400.Google Scholar
  19. Glogger, I., Holzäpfel, L., Schwonke, R., Nückles, M., & Renkl, A. (2009). Activation of learning strategies in writing learning journals: The specificity of prompts matters. Zeitschrift für Pädagogische Psychologie, 23, 95–104.  https://doi.org/10.1024/1010-0652.23.2.95.CrossRefGoogle Scholar
  20. Gollwitzer, P. M. (1996). Das Rubikonmodell der Handlungsphasen. In J. Kuhl & H. Heckhausen (Hrsg.), Motivation, Volition und Handlung. Enzyklopädie der Psychologie, Serie Motivation und Emotion, (Bd. 4, S. 531–582). Göttingen: Hogrefe.Google Scholar
  21. Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.  https://doi.org/10.1037/0003-066X.54.7.493.CrossRefGoogle Scholar
  22. Gollwitzer, P. M., & Brandstätter, V. (1997). Implementation intentions and effective goal pursuit. Journal of Personality and Social Psychology, 73, 186–199.  https://doi.org/10.1037/0022-3514.73.1.186.CrossRefGoogle Scholar
  23. Gollwitzer, P. M., & Sheeran, P. (2006). Implementation intentions and goal achievement: A meta-analysis of effects and processes. Advances in Experimental Social Psychology, 38, 249–268.  https://doi.org/10.1016/s0065-2601(06)38002-1.CrossRefGoogle Scholar
  24. Gollwitzer, A., Schwörer, B., Stern, C., Gollwitzer, P. M., & Bargh, J. A. (2017). Up and down regulation of a highly automatic process: Implementation intentions can both increase and decrease social projection. Journal of Experimental Social Psychology, 70, 19–26.  https://doi.org/10.1016/j.jesp.2016.12.006.CrossRefGoogle Scholar
  25. Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24, 95–123.  https://doi.org/10.1006/ceps.1998.0987.CrossRefGoogle Scholar
  26. Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14, 343–351.  https://doi.org/10.1016/j.learninstruc.2004.06.007.CrossRefGoogle Scholar
  27. Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742.  https://doi.org/10.1006/jmla.1993.1036.CrossRefGoogle Scholar
  28. Heise, E., Gerjets, P., & Westermann, R. (1997). The influence of a waiting intention on action performance: Efficiency impairment and volitional protection in tasks of varying difficulty. Acta Psychologica, 97, 167–182.  https://doi.org/10.1016/S0001-6918(97)00027-9.CrossRefGoogle Scholar
  29. Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738.  https://doi.org/10.1016/j.learninstruc.2007.09.013.CrossRefGoogle Scholar
  30. de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: Some food for thought. Instructional Science, 38, 105–134.  https://doi.org/10.1007/s11251-009-9110-0.CrossRefGoogle Scholar
  31. Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1–17.  https://doi.org/10.3389/fpsyg.2017.01997.CrossRefGoogle Scholar
  32. Kombartzky, U., Plötzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating a strategy for learning from animations. Learning and Instruction, 20, 424–433.  https://doi.org/10.1016/j.learninstruc.2009.05.002.CrossRefGoogle Scholar
  33. Kühl, T., Scheiter, K., Gerjets, P., & Edelmann, J. (2011a). The influence of text modality on learning with static and dynamic visualizations. Computers in Human Behavior, 27, 29–35.  https://doi.org/10.1016/j.chb.2010.05.008.CrossRefGoogle Scholar
  34. Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011b). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education, 56, 176–187.  https://doi.org/10.1016/j.compedu.2010.08.008.CrossRefGoogle Scholar
  35. Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45, 1058–1072.  https://doi.org/10.3758/s13428-013-0334-1.CrossRefGoogle Scholar
  36. Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189.  https://doi.org/10.1016/S0959-4752(02)00019-1.CrossRefGoogle Scholar
  37. Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14, 225–244.  https://doi.org/10.1007/BF03172967.CrossRefGoogle Scholar
  38. Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.  https://doi.org/10.1016/S0959-4752(02)00018-X.CrossRefGoogle Scholar
  39. Lowe, R. K., & Schnotz, W. (2014). Animation principles in multimedia learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl. S. 513–546). New York: Cambridge University Press.CrossRefGoogle Scholar
  40. Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl. S. 43–71). New York: Cambridge University Press.CrossRefGoogle Scholar
  41. Oettingen, G., Hönig, G., & Gollwitzer, P. M. (2000). Effective self-regulation of goal attainment. International Journal of Educational Research, 33, 705–732.  https://doi.org/10.1016/s0883-0355(00)00046-x.CrossRefGoogle Scholar
  42. Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.  https://doi.org/10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  43. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.  https://doi.org/10.1207/s15326985ep3801_1.CrossRefGoogle Scholar
  44. Parks-Stamm, E. J., Gollwitzer, P. M., & Oettingen, G. (2007). Action control by implementation intentions: Effective cue detection and efficient response initiation. Social Cognition, 25, 248–266.  https://doi.org/10.1521/soco.2007.25.2.248.CrossRefGoogle Scholar
  45. Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekarts, P. R. Pintrich & M. Zeidner (Hrsg.), Handbook of self-regulation (S. 451–502). San Diego: Academic Press.CrossRefGoogle Scholar
  46. Salomon, G. (1984). Television is “easy” and print is “tough”: The differential investment of mental effort in learning as a function of perceptions and attributions. Journal of Educational Psychology, 76, 647–658.  https://doi.org/10.1037/0022-0663.76.4.647.CrossRefGoogle Scholar
  47. Scheiter, K., Gerjets, P., & Heise, E. (2014). Distraction during learning with hypermedia: Difficult tasks help to keep task goals on track. Frontiers in Psychology, 5  https://doi.org/10.3389/fpsyg.2014.00268.CrossRefGoogle Scholar
  48. Schmidt-Weigand, F., & Scheiter, K. (2011). The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 27, 22–28.  https://doi.org/10.1016/j.chb.2010.05.007.CrossRefGoogle Scholar
  49. Schmidt-Weigand, F., Hänze, M., & Wodzinski, R. (2009). Complex problem solving and worked examples: The role of prompting strategic behavior and fading-in solution steps. Zeitschrift für Pädagogische Psychologie, 23, 129–138.  https://doi.org/10.1024/1010-0652.23.2.129.CrossRefGoogle Scholar
  50. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). Explaining the modality and contiguity effects: New insights from investigating students’ viewing behaviour. Applied Cognitive Psychology, 24, 226–237.  https://doi.org/10.1002/acp.1554.CrossRefGoogle Scholar
  51. Schnotz, W. (2014). Integrated model of text and picture comprehension. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl. S. 72–103). New York: Cambridge University Press.CrossRefGoogle Scholar
  52. Schnotz, W., & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of animations in multimedia learning: Why reduction of cognitive load can have negative results on learning. Educational Technology Research and Development, 53, 47–58.  https://doi.org/10.1007/BF02504797.CrossRefGoogle Scholar
  53. Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18, 698–711.  https://doi.org/10.1080/09658211.2010.506441.CrossRefGoogle Scholar
  54. Stalbovs, K. (2016). Supporting cognitive processing in multimedia learning: The use of implementation intentions. https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/67917/Stalbovs%20Dissertation%20DRUCK.pdf?sequence=1&isAllowed=y Dissertation, Universität Tübingen.Google Scholar
  55. Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning and Instruction, 35, 1–15.  https://doi.org/10.1016/j.learninstruc.2014.09.002.CrossRefGoogle Scholar
  56. Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.  https://doi.org/10.1023/a:1022193728205.CrossRefGoogle Scholar
  57. Thillmann, H., Künsting, J., Wirth, J., & Leutner, D. (2009). Is it merely a question of “what” to prompt or also “when” to prompt? The role of point of presentation time of prompts in self-regulated learning. Zeitschrift Für Pädagogische Psychologie, 23, 105–115.  https://doi.org/10.1024/1010-0652.23.2.105.CrossRefGoogle Scholar
  58. Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International journal of Human-Computer Studies, 57, 247–262.  https://doi.org/10.1006/ijhc.2002.1017.CrossRefGoogle Scholar
  59. Van Gog, T., Paas, F., Marcus, N., Ayres, P., & Sweller, J. (2009). The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review, 21, 21–30.  https://doi.org/10.1007/s10648-008-9094-3.CrossRefGoogle Scholar
  60. Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition Learning, 1, 3–14.  https://doi.org/10.1007/s11409-006-6893-0.CrossRefGoogle Scholar
  61. de Vet, E., Oenema, A., & Brug, J. (2011). More or better: Do the number and specificity of implementation intentions matter in increasing physical activity? Psychology of Sport and Exercise, 12, 471–477.  https://doi.org/10.1016/j.psychsport.2011.02.008.CrossRefGoogle Scholar
  62. Vollmeyer, R., & Rheinberg, F. (2013). The role of motivation in knowledge acquisition. In R. Azevedo & V. Aleven (Hrsg.), International handbook of metacognition and learning technologies (S. 697–707). New York: Springer.  https://doi.org/10.1007/978-1-4419-5546-3_46.CrossRefGoogle Scholar
  63. Webb, T. L., & Sheeran, P. (2007). How do implementation intentions promote goal attainment? A test of component processes. Journal of Experimental Social Psychology, 43, 295–302.  https://doi.org/10.1016/j.jesp.2006.02.001.CrossRefGoogle Scholar
  64. Webb, T. L., & Sheeran, P. (2008). Mechanisms of implementation intention effects: The role of goal intentions, self-efficacy, and accessibility of plan components. British Journal of Social Psychology, 47, 373–395.  https://doi.org/10.1348/014466607X267010.CrossRefGoogle Scholar
  65. Wieber, F., von Suchodoletz, A., Heikamp, T., Trommsdorff, G., & Gollwitzer, P. M. (2011). If-then planning helps school-aged children to ignore attractive distractions. Social Psychology, 42, 39–47.  https://doi.org/10.1027/1864-9335/a000041.CrossRefGoogle Scholar
  66. Wirth, J. (2009). Promoting self-regulated learning through prompts. Zeitschrift für Pädagogische Psychologie, 23, 91–94.  https://doi.org/10.1024/1010-0652.23.2.91.CrossRefGoogle Scholar
  67. Wong, A., Leahy, W., Marcus, N., & Sweller, J. (2012). Cognitive load theory, the transient information effect and e‑learning. Learning and Instruction, 22, 449–457.  https://doi.org/10.1016/j.learninstruc.2012.05.004.CrossRefGoogle Scholar

Copyright information

© Die Herausgeber und Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Emely Hoch
    • 1
    Email author
  • Katharina Scheiter
    • 1
    • 2
  • Peter Gerjets
    • 1
    • 2
  1. 1.Leibniz-Institut für WissensmedienTübingenDeutschland
  2. 2.Eberhard Karls Universität TübingenTübingenDeutschland

Personalised recommendations