pp 1–13 | Cite as

The effects of postnatal exposure of endocrine disruptors on testicular function: a systematic review and a meta-analysis

  • Despoina BliatkaEmail author
  • Meletios P. Nigdelis
  • Katerina Chatzimeletiou
  • George Mastorakos
  • Stefania Lymperi
  • Dimitrios G. Goulis
Review Article



Despite many epidemiological studies having been conducted, the impact of postnatal exposure of endocrine disruptors (EDs) on testicular function remains a controversial issue.


To systematically review the literature and perform a quantitative synthesis to evaluate the effect of EDs on testicular function.

Materials and methods

A comprehensive search was conducted in the MEDLINE, Scopus, and CENTRAL databases. Eligible for the systematic review were observational (cross-sectional and cohort) studies with (i) adult men who had a high probability of postnatal exposure to EDs (“exposed”), (ii) adult men who had a low probability of postnatal exposure to EDs (“non-exposed”), and (iii) an outcome of interest [seminal parameters and reproductive hormone concentrations]. The continuous outcomes in each of the studies were synthesized by the random effects model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI).


Thirteen studies, including 959 exposed and 907 non-exposed men, fulfilled the inclusion criteria. Exposure to EDs was associated with decreased LH [SMD − 0.17, 95% CI − 0.33 to − 0.02, 10 studies (616 exposed, 563 non-exposed), I2 40%, p = 0.09], progressive motility [SMD − 0.45, 95% CI − 0.77 to − 0.13, three studies (133 cases, 153 controls), I2 38%, p = 0.20], and normal morphology [SMD − 0.50, 95% CI − 0.85 to − 0.14, eight studies (562 cases, 540 controls), I2 87%, p < 0.01] compared with non-exposure. No difference was observed between the other study groups.


Postnatal exposure to EDs is associated with decreased semen quality. Nevertheless, there is no evidence that a disruption of testicular function mediates the deterioration in semen quality.


Endocrine disruptors Hormone disruption Male infertility Sperm parameters 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42000_2019_170_MOESM1_ESM.doc (4.8 mb)
ESM 1 (DOC 4891 kb)


  1. 1.
    Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D et al (2017) Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 23:646–659PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978PubMedCrossRefGoogle Scholar
  3. 3.
    Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE et al (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104(Suppl 4):715–740PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Giwercman A, Giwercman YL (2011) Environmental factors and testicular function. Best Pract Res Clin Endocrinol Metab 25:391–402PubMedCrossRefGoogle Scholar
  5. 5.
    Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127:204–215PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hanaoka T, Kawamura N, Hara K, Tsugane S (2002) Urinary bisphenol a and plasma hormone concentrations in male workers exposed to bisphenol a diglycidyl ether and mixed organic solvents. Occup Environ Med 59:625–628PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mendiola J, Jorgensen N, Andersson AM, Calafat AM, Ye X et al (2010) Are environmental levels of bisphenol a associated with reproductive function in fertile men? Environ Health Perspect 118:1286–1291PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Li S, Dai J, Zhang L, Zhang J, Zhang Z et al (2011) An association of elevated serum prolactin with phthalate exposure in adult men. Biomed Environ Sci 24:31–39PubMedPubMedCentralGoogle Scholar
  9. 9.
    Han X, Cui Z, Zhou N, Ma M, Li L et al (2014) Urinary phthalate metabolites and male reproductive function parameters in Chongqing general population, China. Int J Hyg Environ Health 217:271–278PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang YX, You L, Zeng Q, Sun Y, Huang YH et al (2015) Phthalate exposure and human semen quality: results from an infertility clinic in China. Environ Res 142:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hauser R, Altshul L, Chen Z, Ryan L, Overstreet J et al (2002) Environmental organochlorines and semen quality: results of a pilot study. Environ Health Perspect 110:229–233PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hauser R, Chen Z, Pothier L, Ryan L, Altshul L (2003) The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p'-DDE. Environ Health Perspect 112:1505–1511CrossRefGoogle Scholar
  13. 13.
    Rignell-Hydbom A, Rylander L, Giwercman A, Jönsson BA, Nilsson-Ehle P et al (2004) Exposure to CB-153 and p,p'-DDE and male reproductive function. Hum Reprod 19:2066–2075PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L et al (2003) Phthalate exposure and human semen parameters. Epidemiology 14:269–277PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hauser R, Meeker JD, Duty S, Silva MJ, Calafat AM (2006) Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17:682–691PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L et al (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22:688–695PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu L, Bao H, Liu F, Zhang J, Shen H (2012) Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int 42:78–83PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jurewicz J, Radwan M, Sobala W, Ligocka D, Radwan P et al (2013) Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones. Reprod Toxicol 42:232–241PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE et al (2009) Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect 117:923–927PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL et al (2013) Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect 121:453–458PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hoyer BB, Lenters V, Giwercman A, Jonsson AG, Toft G et al (2018) Impact of Di-2-Ethylhexyl phthalate metabolites on male reproductive function: a systematic review of human evidence. Curr Environ Health Rep 5:20–33PubMedCrossRefGoogle Scholar
  22. 22.
    Bach CC, Vested A, Jorgensen KT, Bonde JP, Henriksen TB et al (2016) Perfluoroalkyl and polyfluoroalkyl substances and measures of human infertiliy: a systematic review. Crit Rev Toxicol 46:735–755PubMedCrossRefGoogle Scholar
  23. 23.
    Suk WA, Olden K, Yang RS (2002) Chemical mixtures research: significance and future perspectives. Environ Health Perspect 110:891–892PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bliatka D, Lymperi S, Mastorakos G, Goulis DG (2017) Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking? Andrology 5:404–407PubMedCrossRefGoogle Scholar
  25. 25.
    Cook DA, Reed DA (2015) Appraising the quality of medical education research methods: the medical education research study quality instrument and the Newcastle-Ottawa scale-education. Acad Med 90:1067–1076PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA (2007) A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 8:239–251PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012CrossRefGoogle Scholar
  30. 30.
    Larsen SB, Giwercman A, Spano M, Bonde JP (1998) A longitudinal study of semen quality in pesticide spraying Danish farmers. The ASCLEPIOS study group. Reprod Toxicol 12:581–589PubMedCrossRefGoogle Scholar
  31. 31.
    Padungtod C, Savitz DA, Overstreet JW, Christiani DC, Ryan LM et al (2000) Occupational pesticide exposure and semen quality among Chinese workers. J Occup Environ Med 42:982–992PubMedCrossRefGoogle Scholar
  32. 32.
    Oliva A, Spira A, Multigner L (2001) Contribution of environmental factors to the risk of male infertility. Hum Reprod 16:1768–1776PubMedCrossRefGoogle Scholar
  33. 33.
    Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P et al (2006) Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114:1643–1648PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yucra S, Rubio J, Gasco M, Gonzales C, Steenland K et al (2006) Semen quality and reproductive sex hormone levels in Peruvian pesticide sprayers. Int J Occup Environ Health 12:355–361PubMedCrossRefGoogle Scholar
  35. 35.
    Boggia B, Carbone U, Farinaro E, Zarrilli S, Lombardi G et al (2017) Effects of working posture and exposure to traffic pollutants on sperm quality. J Endocrinol Investig 32:430–434CrossRefGoogle Scholar
  36. 36.
    Hossain F, Ali O, D'Souza UJ, Naing DK (2010) Effects of pesticide use on semen quality among farmers in rural areas of Sabah, Malaysia. J Occup Health 52:353–360PubMedCrossRefGoogle Scholar
  37. 37.
    Toft G, Jönsson BA, Lindh CH, Giwercman A, Spano M et al (2012) Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum Reprod 27:2532–2540PubMedCrossRefGoogle Scholar
  38. 38.
    Miranda-Contreras L, Gomez-Perez R, Rojas G, Cruz I, Berrueta L et al (2013) Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. J Occup Health 55:195–203PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshinaga J, Imai K, Shiraishi H, Nozawa S, Yoshiike M et al (2014) Pyrethroid insecticide exposure and reproductive hormone levels in healthy Japanese male subjects. Andrology 2:416–420PubMedCrossRefGoogle Scholar
  40. 40.
    Wan HT, Mruk DD, Wong CK, Cheng CY (2013) Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets 17:839–855PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Singh S, Li SS (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci 13:10143–10153PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lotti F, Corona G, Degli Innocenti S, Filimberti E, Scognamiglio V et al (2013) Seminal, ultrasound and psychobiological parameters correlate with metabolic syndrome in male members of infertile couples. Andrology 1:229–239PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wu FC, Tajar A, Beynon JM, Pye SR, Silman AJ et al (2010) Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med 363:123–135PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Frederiksen H, Kranich SK, Jorgensen N, Taboureau O, Petersen JH et al (2013) Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47:958–967PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A et al (2016) The epidemiological evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update 23:104–125PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dodge LE, Williams PL, Williams MA, Missmer SA, Souter I et al (2015) Associations between paternal urinary phthalate metabolite concentrations and reproductive outcomes among couples seeking fertility treatment. Reprod Toxicol 58:184–193PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang SY, Wang Y, Xie FQ, Li YX, Wan XL et al (2015) Analysis of PAEs in semen of infertile men. Int J Occup Eviron Health 21:40–48CrossRefGoogle Scholar
  48. 48.
    Specht IO, Bonde JP, Toft G, Lindh CH, Jonsson BAG et al (2015) Serum phthalate levels and time to pregnancy in couples from Greenland. Pol Ukr Plos One 18Google Scholar
  49. 49.
    Campagna M, Satta G, Fadda D, Pili S, Cocco P (2015) Male fertility following occupational exposure to dichlorodiphenyltrichloroethane (DDT). Environ Int 77:42–47PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Buck Louis GM, Smarr MM, Sun L, Chen Z, Honda M et al (2018) Endocrine disrupting chemicals in seminal plasma and couple fecundity. Environ Res 163:64–70PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2020

Authors and Affiliations

  • Despoina Bliatka
    • 1
    Email author
  • Meletios P. Nigdelis
    • 2
  • Katerina Chatzimeletiou
    • 3
  • George Mastorakos
    • 4
  • Stefania Lymperi
    • 2
  • Dimitrios G. Goulis
    • 2
  1. 1.1st Department of Obstetrics and GynecologyPapageorgiou General HospitalThessalonikiGreece
  2. 2.1st Department of Obstetrics and Gynecology, Unit of Reproductive EndocrinologyAristotle University of ThessalonikiThessalonikiGreece
  3. 3.1st Department of Obstetrics and Gynecology, Unit for Human ReproductionAristotle University of ThessalonikiThessalonikiGreece
  4. 4.2nd Department of Obstetrics and Gynecology, Unit of Endocrinology, Diabetes mellitus and MetabolismNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations