Advertisement

Hormones

pp 1–9 | Cite as

Glucose metabolism disorders in patients with adrenal gland disorders: pathophysiology and management

  • Kalliopi J. Ioakim
  • Guy I. Sydney
  • Stavroula A. PaschouEmail author
Review Article
  • 20 Downloads

Abstract

The aim of this review is to explore and discuss disorders of glucose metabolism that can arise in individuals with adrenal gland disorders, as well as to enumerate the available therapeutic treatments for these while considering their benefits and drawbacks. Hyperfunctioning adrenal glands, as in hypercortisolism, hyperaldosteronism, and malignancy, or hypofunctioning of adrenal glands, as in adrenal insufficiency, can lead to carbohydrate metabolism dysregulation with subsequent glucometabolic repercussions, either hyperglycemia or hypoglycemia. Glycemic disorders further affect patients’ quality of life and represent a therapeutic dilemma for physicians. Current management strategies for glycemic dysregulation in individuals with adrenal gland disorders are fighting the underlying causes, as well as utilizing antidiabetic therapies that aid in maintaining euglycemia. Further research focused on discovering drug preparations of greater accuracy and effectiveness tailored to patients with adrenal problems as well as studies investigating optimal lifestyle management models for these individuals will assist towards achieving optimal regulation of glucose metabolism.

Keywords

Adrenal Incidentalomas Hypoglycemia Hyperglycemia Type 2 diabetes Insulin resistance Antidiabetic medications 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mazziotti G, Gazzaruso C, Giustina A (2011) Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol Metab 22:499–506.  https://doi.org/10.1016/j.tem.2011.09.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Fagerholm V, Haaparanta M, Scheinin M (2011) Α 2-adrenoceptor regulation of blood glucose homeostasis. Basic Clin Pharmacol Toxicol 108:365–370.  https://doi.org/10.1111/j.1742-7843.2011.00699.x CrossRefPubMedGoogle Scholar
  3. 3.
    Cassuto H, Kochan K, Chakravarty K et al (2005) Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 280:33873–33884.  https://doi.org/10.1074/jbc.M504119200 CrossRefPubMedGoogle Scholar
  4. 4.
    Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783.  https://doi.org/10.1038/nri1937 CrossRefPubMedGoogle Scholar
  5. 5.
    Geer EB, Islam J, Buettner C (2014) Mechanisms of glucocorticoid-induced insulin resistance. Endocrinol Metab Clin N Am 43:75–102.  https://doi.org/10.1016/j.ecl.2013.10.005 CrossRefGoogle Scholar
  6. 6.
    Fischer B, Rausch U, Wollny P, Westphal H, Seitz JAG (1990) Immunohistochemical localization of the glucocorticoid receptor pancreatic beta-cells of the rat. Endocrinology 126:2635–2641CrossRefGoogle Scholar
  7. 7.
    Kamba A, Daimon M, Murakami H et al (2016) Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS One 11:1–10.  https://doi.org/10.1371/journal.pone.0166077 CrossRefGoogle Scholar
  8. 8.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2003) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114:115–121.  https://doi.org/10.1016/S0167-0115(03)00111-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Nauck M, Stöckmann F, Ebert RCW (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52CrossRefGoogle Scholar
  10. 10.
    Hansen KB, Vilsbøll T, Bagger JI et al (2010) Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects. J Clin Endocrinol Metab 95:3309–3317.  https://doi.org/10.1210/jc.2010-0119 CrossRefPubMedGoogle Scholar
  11. 11.
    Mullan K, Black N, Thiraviaraj A et al (2010) Is there value in routine screening for Cushing’s syndrome in patients with diabetes? J Clin Endocrinol Metab 95:2262–2265.  https://doi.org/10.1210/jc.2009-2453 CrossRefPubMedGoogle Scholar
  12. 12.
    Feelders RA, Pulgar SJ, Kempel A, Pereira AM (2012) The burden of Cushing’s disease: clinical and health-related quality of life aspects. Eur J Endocrinol 167:311–326.  https://doi.org/10.1530/EJE-11-1095 CrossRefPubMedGoogle Scholar
  13. 13.
    Hofland LJ, Lamberts SWJ (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24:28–47.  https://doi.org/10.1210/er.2000-0001 CrossRefPubMedGoogle Scholar
  14. 14.
    Scaroni C, Zilio M, Foti M, Boscaro M (2017) Glucose metabolism abnormalities in cushing syndrome: from molecular basis to clinical management. Endocr Rev 38:189–219.  https://doi.org/10.1210/er.2016-1105 CrossRefPubMedGoogle Scholar
  15. 15.
    Colao A, Petersenn S, Newell-Price J et al (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366:914–924.  https://doi.org/10.1056/NEJMoa1105743 CrossRefPubMedGoogle Scholar
  16. 16.
    MacKenzie Feder J, Bourdeau I, Vallette S et al (2014) Pasireotide monotherapy in Cushing’s disease: a single-centre experience with 5-year extension of phase III trial. Pituitary 17:519–529.  https://doi.org/10.1007/s11102-013-0539-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Boscaro M, Bertherat J, Findling J et al (2014) Extended treatment of Cushing’s disease with pasireotide: results from a 2-year, phase II study. Pituitary 17:320–326.  https://doi.org/10.1007/s11102-013-0503-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Reznik Y, Bertherat J, Borson-Chazot F et al (2013) Management of hyperglycaemia in Cushing’s disease: experts’ proposals on the use of pasireotide. Diabetes Metab 39:34–41.  https://doi.org/10.1016/j.diabet.2012.10.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Diabetes Care 35:1364–1379.  https://doi.org/10.2337/dc12-0413 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Silverstein JM (2016) Hyperglycemia induced by pasireotide in patients with Cushing’s disease or acromegaly. Pituitary 19:536–543.  https://doi.org/10.1007/s11102-016-0734-1 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Erbil Y, Ademoǧlu E, Özbey N et al (2006) Evaluation of the cardiovascular risk in patients with subclinical Cushing syndrome before and after surgery. World J Surg 30:1665–1671.  https://doi.org/10.1007/s00268-005-0681-x CrossRefPubMedGoogle Scholar
  22. 22.
    Chiodini I, Tauchmanovà L, Torlontano M et al (2002) Bone involvement in eugonadal male patients with adrenal incidentaloma and subclinical hypercortisolism. J Clin Endocrinol Metab 87:5491–5494.  https://doi.org/10.1210/jc.2002-020399 CrossRefPubMedGoogle Scholar
  23. 23.
    Tauchmanovà L, Rossi R, Biondi B et al (2002) Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 87:4872–4878.  https://doi.org/10.1210/jc.2001-011766 CrossRefPubMedGoogle Scholar
  24. 24.
    Van Raalte DH, Nofrate V, Bunck MC et al (2010) Acute and 2-week exposure to prednisolone impair different aspects of β-cell function in healthy men. Eur J Endocrinol 162:729–735.  https://doi.org/10.1530/EJE-09-1034 CrossRefPubMedGoogle Scholar
  25. 25.
    Barzon L, Sonino N, Fallo F, Palu GBM (2003) Prevalence and natural history of adrenal incidentalomas. Eur J Endocrinol 149:273–285.  https://doi.org/10.1530/eje.0.149027365 CrossRefPubMedGoogle Scholar
  26. 26.
    Paschou SA, Kandaraki E, Dimitropoulou F et al (2016) Subclinical Cushing’s syndrome in patients with bilateral compared to unilateral adrenal incidentalomas: a systematic review and meta-analysis. Endocrine 51:225–235.  https://doi.org/10.1007/s12020-015-0776-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandez-Real JM, Ricart EW, Simò R, Salinas IWS (1998) Study of glucose tolerance in consecutive patients harbouring incidental adrenal tumours. Clin Endocrinol 49:53–61CrossRefGoogle Scholar
  28. 28.
    Altieri B, Tirabassi G, Della CS et al (2016) Adrenocortical tumors and insulin resistance: what is the first step? Int J Cancer 138:2785–2794.  https://doi.org/10.1002/ijc.29950 CrossRefPubMedGoogle Scholar
  29. 29.
    Shimamoto K, Shiiki M, Ise T et al (1994) Does insulin resistance participate in an impaired glucose tolerance in primary aldosteronism? J Hypertens 8:755–759Google Scholar
  30. 30.
    Luther JM (2014) Effects of aldosterone on insulin sensitivity and secretion. Steroids 91:54–60.  https://doi.org/10.1016/j.steroids.2014.08.016 CrossRefPubMedGoogle Scholar
  31. 31.
    Watanabe D, Yatabe M, Ichihara A (2016) Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens 38:613–617.  https://doi.org/10.1080/10641963.2016.1182176 CrossRefPubMedGoogle Scholar
  32. 32.
    Kumagai E, Adachi H, Jacobs DR et al (2011) Plasma aldosterone levels and development of insulin resistance. Hypertension 58:1043–1048.  https://doi.org/10.1161/hypertensionaha.111.180521 CrossRefPubMedGoogle Scholar
  33. 33.
    Tancredi M, Johannsson G, Eliasson B et al (2017) Prevalence of primary aldosteronism among patients with type 2 diabetes. Clin Endocrinol 87:233–241.  https://doi.org/10.1111/cen.13370 CrossRefGoogle Scholar
  34. 34.
    Young WF (2007) Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol 66:607–618.  https://doi.org/10.1111/j.1365-2265.2007.02775.x CrossRefGoogle Scholar
  35. 35.
    Barth E, Albuszies G, Baumgart K et al (2007) Glucose metabolism and catecholamines. Crit Care Med 35:S508–S518.  https://doi.org/10.1097/01.CCM.0000278047.06965.20 CrossRefPubMedGoogle Scholar
  36. 36.
    Douma S, Petidis K, Kartali N et al (2008) Pheochromocytoma presenting as diabetic ketoacidosis. J Diabetes Complicat 22:295–296.  https://doi.org/10.1016/j.jdiacomp.2007.02.006 CrossRefPubMedGoogle Scholar
  37. 37.
    Beninato T, Kluijfhout WP, Drake FT et al (2017) Resection of pheochromocytoma improves diabetes mellitus in the majority of patients. Ann Surg Oncol 24:1208–1213.  https://doi.org/10.1245/s10434-016-5701-6 CrossRefPubMedGoogle Scholar
  38. 38.
    Bluher M, Windgassen MPR (2000) Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma. Diabetes Care 23:1591–1592CrossRefGoogle Scholar
  39. 39.
    Mesmar B, Poola-Kella S, Malek R (2017) The physiology behind diabetes mellitus in patients with pheochromocytoma: a review of the literature. Endocr Pract 23:999–1005.  https://doi.org/10.4158/ep171914.ra CrossRefPubMedGoogle Scholar
  40. 40.
    La Batide-Alanore A, Chatellier GPP-F (2003) Diabetes as a marker of pheochromocytoma in hypertensive patients. J Hypertens 21:1703–1707CrossRefGoogle Scholar
  41. 41.
    Abecassis M, McLoughlin MJ, Langer B, Kudlow JE (1985) Serendipitous adrenal masses: prevalence, significance, and management. Am J Surg 149:783–788CrossRefGoogle Scholar
  42. 42.
    Bovio S, Cataldi A, Reimondo G et al (2006) Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Investig 29:298–302CrossRefGoogle Scholar
  43. 43.
    Sydney GI, Ioakim KJ, Paschou SA (2019) Insulin resistance and adrenal incidentalomas: a bidirectional relationship. Maturitas 121:1–6.  https://doi.org/10.1016/j.maturitas.2018.12.002 CrossRefPubMedGoogle Scholar
  44. 44.
    Ivovic M, Marina LV, Vujovic S et al (2013) Nondiabetic patients with either subclinical Cushing’s or nonfunctional adrenal incidentalomas have lower insulin sensitivity than healthy controls: clinical implications. Metabolism 62:786–792.  https://doi.org/10.1016/j.metabol.2012.12.006 CrossRefPubMedGoogle Scholar
  45. 45.
    Reincke M, Fassnacht M, Väth S, Mora PAB (1997) Adrenal incidentalomas: a manifestation of the metabolic syndrome? Endocr Res 22:757–761CrossRefGoogle Scholar
  46. 46.
    Muscogiuri G, Sorice GP, Prioletta A, Mezza T, Cipolla C, Salomone E, Giaccari A, Pontecorvi ADCS (2011) The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause-effect relationship? Clin Endocrinol 74:300–305CrossRefGoogle Scholar
  47. 47.
    Wagnerova H, Dudasova DLI (2009) Hormonal and metabolic evaluation of adrenal incidentalomas. Neoplasma 56:521–525.  https://doi.org/10.4149/neo CrossRefPubMedGoogle Scholar
  48. 48.
    Ensincks J, Williams RH (1974) Disorders causing hypoglycemia. In: Williams RH (ed) Textbook of Endocrinology, 5th edn. Saunders, Philadelphia, pp 627–659Google Scholar
  49. 49.
    Yoshikawa KWH (1980) Hypoglycemia by adrenocortical carcinoma with Cushing’s syndrome. Tohoku J Exp Med 132:49–60CrossRefGoogle Scholar
  50. 50.
    Aszkanazy CL, Jenkins LSW (1958) Adrenal cortical carcinoma associated with hypoglycemia. Canad M A J 79:482–484Google Scholar
  51. 51.
    Ueland GAHE (2018) Metabolic complications in adrenal insufficiency. Front Horm Res 49:104–113.  https://doi.org/10.1159/000486004 CrossRefPubMedGoogle Scholar
  52. 52.
    Mazziotti G, Formenti AM, Frara S et al (2017) Diabetes in Cushing disease. Curr Diab Rep 17.  https://doi.org/10.1007/s11892-017-0860-9
  53. 53.
    Paschou SA, Vryonidou A, Goulis DG (2016) Adrenal incidentalomas: a guide to assessment , treatment and follow-up. Maturitas 92:79–85.  https://doi.org/10.1016/j.maturitas.2016.07.017 CrossRefPubMedGoogle Scholar
  54. 54.
    Munir AN-PJ (2010) Management of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 92(Suppl 1):82–85CrossRefGoogle Scholar
  55. 55.
    Ferraù FKM (2015) Metabolic comorbidities in Cushing’s syndrome. Eur J Endocrinol 173:M133–M157.  https://doi.org/10.1530/EJE-15-0354 CrossRefPubMedGoogle Scholar
  56. 56.
    Poli G, Cantini G, Armignacco R, Fucci R, Santi R, Canu L, Nesi G, Mannelli MLM (2016) Metformin as a new anti-cancer drug in adrenocortical carcinoma. Oncotarget.  https://doi.org/10.18632/oncotarget.10421
  57. 57.
    Pan Z, Xie D, Choudhary V et al (2014) The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells. Mol Cell Endocrinol 394:119–128.  https://doi.org/10.1016/j.mce.2014.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ambrosi B, Arosio M, Dall’Asta C, Cannavo S, Libe R, Vigo T, Chiodini I, Epaminonda P, Trimarchi FB-PP (2004) Effects of the chronic administration of the PPARγ receptor ligand, rosiglitazone, in Cushing’s disease. Eur J Endocrinol 151:173–178CrossRefGoogle Scholar
  59. 59.
    Alevizaki M, Philippou G, Zapanti L, Alevizaki CC, Anastasiou E MM (2004) Significant improvement of recurrent pituitary-dependent Cushing’s syndrome after administration of a PPARγ agonist. Progr 86th Annu Meet Endocr Soc New Orleans, LA 418 (Abstract P2-453)Google Scholar
  60. 60.
    Cannavo S, Ambrosi B, Chiodini I, Vigo T, Russo A, Milici C, Barbetta L, Dall’Asta C, Adda GAM (2004) Baseline and CRH-stimulated ACTH and cortisol levels after administration of the peroxisome proliferator-activated receptor-γ ligand, rosiglitazone, in Cushing’s disease. J Endocrinol Investig 27:RC8–RC11CrossRefGoogle Scholar
  61. 61.
    Suri D, Weiss RE (2005) Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing’s disease. J Clin Endocrinol Metab 90:1340–1346CrossRefGoogle Scholar
  62. 62.
    Clore JNT-HL (2009) Glucocorticoid-induced hyperglycemia. Endocr Pr 15:469–474CrossRefGoogle Scholar
  63. 63.
    van Raalte DH et al (2011) Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34:412–417CrossRefGoogle Scholar
  64. 64.
    Anderson AWB (2013) 11b-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs 73:1385–1393CrossRefGoogle Scholar
  65. 65.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JDC, Dacquin R, Mee PJ, McKee MD, Jung DYZZ, Kim JK, Mauvais-Jarvis F, Ducy PKG (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469CrossRefGoogle Scholar
  66. 66.
    Conrado DJ, Krishnaswami S, Shoji S, Kolluri SH-HJ, McCabe D, Rojo RTB (2016) Predicting the probability of successful efficacy of a dissociated agonist of the glucocorticoid receptor from dose-response analysis. J Pharmacokinet Pharmacodyn 43:325–341CrossRefGoogle Scholar
  67. 67.
    Im J, Yu B, Jeon J, Kim S (2008) Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 396:66–69CrossRefGoogle Scholar
  68. 68.
    Hwang Y, Jeong I, Ahn K, Chung H (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev 25:768–772CrossRefGoogle Scholar
  69. 69.
    Winhofer Y, Handisurya A, Tura A et al (2010) Osteocalcin is related to enhanced insulin secretion in gestational diabetes. Diabetes Care 33:139–143CrossRefGoogle Scholar
  70. 70.
    Fischer E, Adolf C, Pallauf A, Then C, Bidlingmaier M, Beuschlein F, Seissler JRM (2013) Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J Clin Endocrinol Metab 98:2513–2520CrossRefGoogle Scholar
  71. 71.
    Rogowicz-Frontczak A, Majchrzak A, Zozulińska-Ziółkiewicz D (2017) Insulin resistance in endocrine disorders — treatment options. Endokrynol Pol 68:334–342.  https://doi.org/10.5603/EP.2017.0026 CrossRefPubMedGoogle Scholar
  72. 72.
    Kardalas E, Paschou SA, Anagnostis P et al (2018) Hypokalemia: a clinical update. Endocr Connect 7:R135–R146CrossRefGoogle Scholar
  73. 73.
    Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis ACA, Sechi LA (2006) Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab 91:3457–3463CrossRefGoogle Scholar
  74. 74.
    Diamanti-Kandarakis E, Zapanti E, Peridis MH et al (2003) Insulin resistance in pheochromocytoma improves more by surgical rather than by medical treatment. Horm (Athens) 2:61–66CrossRefGoogle Scholar
  75. 75.
    Pogorzelski R, Toutounchi S, Krajewska E et al (2014) The effect of surgical treatment of phaeochromocytoma on concomitant arterial hypertension and diabetes mellitus in a single-centre retrospective study. Cent Eur J Urol 67:361–365Google Scholar
  76. 76.
    Stenstrom G, Sjostrom LSU (1984) Diabetes mellitus in phaeochromocytoma: fasting blood glucose levels before and after surgery in 60 patients with phaeochromocytoma. Acta Endocrinol 106:511–515CrossRefGoogle Scholar
  77. 77.
    Bornstein SR, Allolio B, Arlt Wet al (2015) Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 101:364–389.  https://doi.org/10.1210/jc.2015-1710 CrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2019

Authors and Affiliations

  1. 1.School of MedicineEuropean University CyprusNicosiaCyprus
  2. 2.Division of Endocrinology and Diabetes, “Aghia Sophia” Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations