Advertisement

Hormones

pp 1–13 | Cite as

Potential clinical variants detected in mitochondrial DNA D-loop hypervariable region I of patients with non-alcoholic steatohepatitis

  • Burcu Hasturk
  • Yusuf Yilmaz
  • Fatih ErenEmail author
Original article
  • 58 Downloads

Abstract

Purpose

Non-alcoholic steatohepatitis (NASH) is a mitochondrial disease. However, the underlying role of mitochondrial genetics has not yet been completely elucidated. Evaluation of D-loop nucleotide variations with respect to statistical significance and clinical data distribution.

Methods

Genomic DNAs were extracted from the peripheral blood samples of patients with biopsy-proven 150 NASH as well as from 150 healthy individuals to explore the functional D-loop region responsible for the replication and transcription of the mitochondrial genome. DNA sequencing by capillary electrophoresis analysis was performed for the D-loop region of mitochondrial DNA containing the hypervariable region I, and restriction fragment length polymorphism with MnlI analysis was performed for the m.16189 T/C D-loop variant.

Results

The m.A16318C variant was detected only in patients with NASH and approached significance level. Based on clinical data, six variants associated with histological subgroups of NASH and NASH-complicated diseases were identified. In patients with NASH, the m.16129 AA genotype was associated with advanced-stage fibrosis; the m.16249 CC genotype was associated with advanced lobular inflammation and advanced-stage histological steatosis; the m.16296 TT genotype was associated with hypothyroidism; the m.16163 GG and m.16294 TT genotypes were associated with metabolic syndrome; and the m.16256 TT+CT genotypes were associated with type II diabetes. In patients with NASH, microRNAs were estimated by targeting the significant variants identified in this study.

Conclusion

These findings suggest that NASH may be associated with D-loop nucleotide variations and that microRNA-based in vitro and/or in vivo studies may be developed by targeting the D-loop variants.

Keywords

D-loop MicroRNA target prediction Mitochondrial DNA Non-alcoholic steatohepatitis Non-alcoholic fatty liver disease Polymorphism 

Notes

Acknowledgments

We thank all volunteers who agreed to participate in the study. The authors are grateful to Dr. Ruslan Asadov for performing liver biopsies and Prof. Dr. Cigdem Ataizi Celikel for the histological evaluation of liver specimens.

Funding information

This study was financially supported by the Scientific Research Project Coordination Unit to Marmara University, Istanbul, Turkey (Grant No. SAG-C-YLP-131016-0439; Grant No. SAG-D-090517-0263).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the local ethics committee (Marmara University School of Medicine, Istanbul, Turkey; protocol no. 09.2016.097; approval date, 29 January 2016).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

42000_2019_137_MOESM1_ESM.pdf (154 kb)
ESM 1 (PDF 153 kb)

References

  1. 1.
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84.  https://doi.org/10.1002/hep.28431 CrossRefPubMedGoogle Scholar
  2. 2.
    Spengler EK, Loomba R (2015) Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc 90(9):1233–1246.  https://doi.org/10.1016/j.mayocp.2015.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Della Pepa G, Vetrani C, Lombardi G, Bozzetto L, Annuzzi G, Rivellese AA (2017) Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals. Nutrients 9(10).  https://doi.org/10.3390/nu9101065 CrossRefGoogle Scholar
  4. 4.
    Oseini AM, Sanyal AJ (2017) Therapies in non-alcoholic steatohepatitis (NASH). Liver Int 37(Suppl 1):97–103.  https://doi.org/10.1111/liv.13302 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014) Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 20(39):14205–14218.  https://doi.org/10.3748/wjg.v20.i39.14205 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16(2):215–222.  https://doi.org/10.1101/gr.4305906 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jemt E, Persson Ö, Shi Y, Mehmedovic M, Uhler JP, Dávila López M, Freyer C, Gustafsson CM, Samuelsson T, Falkenberg M (2015) Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 43(19):9262–9275.  https://doi.org/10.1093/nar/gkv804 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yilmaz Y, Eren F, Colak Y, Senates E, Celikel CA, Imeryuz N (2012) Hepatic expression and serum levels of syndecan 1 (CD138) in patients with nonalcoholic fatty liver disease. Scand J Gastroenterol 47(12):1488–1493.  https://doi.org/10.3109/00365521.2012.725093 CrossRefPubMedGoogle Scholar
  9. 9.
    Yilmaz Y, Eren F (2019) Serum biomarkers of fibrosis and extracellular matrix remodeling in patients with nonalcoholic fatty liver disease: association with liver histology. Eur J Gastroenterol Hepatol 31(1):43–46.  https://doi.org/10.1097/MEG.0000000000001240 CrossRefPubMedGoogle Scholar
  10. 10.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Nonalcoholic steatohepatitis clinical research network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321.  https://doi.org/10.1002/hep.20701 CrossRefPubMedGoogle Scholar
  11. 11.
    Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, Tordjman J, Clement K (2012) Histopathological algorithm and scoring system for evaluation of liver lesions inmorbidly obese patients. Hepatology 56(5):1751–1759.  https://doi.org/10.1002/hep.25889 CrossRefPubMedGoogle Scholar
  12. 12.
    Aral C, Akkiprik M, Caglayan S, Atabey Z, Ozişik G, Bekiroglu N, Ozer A (2011) Investigation of relationship of the mitochondrial DNA 16189 T>C polymorphism with metabolic syndrome and its associated clinical parameters in Turkish patients. Hormones (Athens) 10(4):298–303.  https://doi.org/10.14310/horm.2002.1321 CrossRefGoogle Scholar
  13. 13.
    Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B (2013) Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58(4):1497–1507.  https://doi.org/10.1002/hep.26226 CrossRefPubMedGoogle Scholar
  14. 14.
    Verbeek J, Lannoo M, Pirinen E, Ryu D, Spincemaille P, Vander Elst I, Windmolders P, Thevissen K, Cammue BP, van Pelt J, Fransis S, Van Eyken P, Ceuterick-De Groote C, Van Veldhoven PP, Bedossa P, Nevens F, Auwerx J, Cassiman D (2015) Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut 64(4):673–683.  https://doi.org/10.1136/gutjnl-2014-306748 CrossRefPubMedGoogle Scholar
  15. 15.
    Chinnery PF, Elliott HR, Patel S, Lambert C, Keers SM, Durham SE, McCarthy MI, Hitman GA, Hattersley AT, Walker M (2005) Role of the mitochondrial DNA 16184-16193 poly-C tract in type 2 diabetes. Lancet 366(9497):1650–1651.  https://doi.org/10.1016/S0140-6736(05)67492-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Gibson AM, Edwardson JA, Turnbull DM, McKeith IG, Morris CM, Chinnery PF (2004) No evidence of an association between the T16189C mtDNA variant and late onset dementia. J Med Genet 41(1):e7.  https://doi.org/10.1136/jmg.2003.010983 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tang DL, Zhou X, Li X, Zhao L, Liu F (2006) Variation of mitochondrial gene and the association with type 2 diabetes mellitus in a Chinese population. Diabetes Res Clin Pract 73(1):77–82.  https://doi.org/10.1016/j.diabres.2005.12.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Park KS, Chan JC, Chuang LM, Suzuki S, Araki E, Nanjo K, Ji L, Ng M, Nishi M, Furuta H, Shirotani T, Ahn BY, Chung SS, Min HK, Lee SW, Kim JH, Cho YM, Lee HK (2008) Study Group of Molecular Diabetology in Asia. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 51(4):602–608.  https://doi.org/10.1007/s00125-008-0933-z CrossRefPubMedGoogle Scholar
  19. 19.
    Ye C, Shu XO, Pierce L, Wen W, Courtney R, Gao YT, Zheng W, Cai Q (2010) Mutations in the mitochondrial DNA D-loop region and breast cancer risk. Breast Cancer Res Treat 119(2):431–436.  https://doi.org/10.1007/s10549-009-0397-y CrossRefPubMedGoogle Scholar
  20. 20.
    Kumari T, Vachher M, Bansal S, Bamezai RNK, Kumar B (2018) Meta-analysis of mitochondrial T16189C polymorphism for cancer and type 2 diabetes risk. Clin Chim Acta 482:136–143.  https://doi.org/10.1016/j.cca.2018.03.041 CrossRefPubMedGoogle Scholar
  21. 21.
    Amo T, Kamimura N, Asano H, Asoh S, Ohta S (2017) Cisplatin selects short forms of the mitochondrial DNA OriB variant (16184-16193 poly-cytosine tract), which confer resistance to cisplatin. Sci Rep 7:46240.  https://doi.org/10.1038/srep46240 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skuratovskaia DA, Sofronova JK, Zatolokin PA, Vasilenko MA, Litvinova LS, Mazunin IO (2017) The association of the mitochondrial DNA oriB variants with metabolic syndrome. Biomed Khim 63(6):533–538.  https://doi.org/10.18097/PBMC20176306533 CrossRefPubMedGoogle Scholar
  23. 23.
    Maliarchuk BA, Derenko MV (1997) Analysis of nucleotide combinations in types of the control region of human mitochondrial DNA. Genetika 33(3):387–392PubMedGoogle Scholar
  24. 24.
    Watkins WS, Bamshad M, Dixon ME, Bhaskara Rao B, Naidu JM, Reddy PG, Prasad BV, Das PK, Reddy PC, Gai PB, Bhanu A, Kusuma YS, Lum JK, Fischer P, Jorde LB (1999) Multiple origins of the mtDNA 9-bp deletion in populations of South India. Am J Phys Anthropol 109(2):147–158.  https://doi.org/10.1002/(SICI)1096-8644(199906)109:2<147::AID-AJPA1>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  25. 25.
    Monsalve MV, Hagelberg E (1997) Mitochondrial DNA polymorphisms in Carib people of Belize. Proc Biol Sci 264(1385):1217–1224.  https://doi.org/10.1098/rspb.1997.0168 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Quintana-Murci L, Chaix R, Wells RS, Behar DM, Sayar H, Scozzari R, Rengo C, Al-Zahery N, Semino O, Santachiara-Benerecetti AS, Coppa A, Ayub Q, Mohyuddin A, Tyler-Smith C, Qasim Mehdi S, Torroni A, McElreavey K (2004) Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Am J Hum Genet 74(5):827–845.  https://doi.org/10.1086/383236 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang Q, Ito M, Adams K, Li BU, Klopstock T, Maslim A, Higashimoto T, Herzog J, Boles RG (2004) Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet A 131(1):50–58.  https://doi.org/10.1002/ajmg.a.30323 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou HY, Shu HY, Dai J, Li HC, Tang L, Wang HW, Ni B (2018) Maternal genetic backgrounds contribute to the genetic susceptibility of tongue cancer patients in Hunan, central of China. Mitochondrial DNA A DNA Mapp Seq Anal 29(3):347–352.  https://doi.org/10.1080/24701394.2016.1278539 CrossRefPubMedGoogle Scholar
  29. 29.
    Falah M, Farhadi M, Kamrava SK, Mahmoudian S, Daneshi A, Balali M, Asghari A, Houshmand M (2017) Association of genetic variations in the mitochondrial DNA control region with presbycusis. Clin Interv Aging 12:459–465.  https://doi.org/10.2147/CIA.S123278 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ma XP, Yu G, Chen X, Xiao Q, Shi Z, Zhang LY, Chen H, Zhang P, Ding DL, Huang HX, Saiyin H, Chen TY, Lu PX, Wang NJ, Yu H, Conran C, Sun J, Zheng SL, Xu J, Yu L, Jiang DK (2016) MiR-608 rs4919510 is associated with prognosis of hepatocellular carcinoma. Tumour Biol 37(7):9931–9942.  https://doi.org/10.1007/s13277-016-4897-1 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang K, Liang Q, Wei L, Zhang W, Zhu P (2016) MicroRNA-608 acts as a prognostic marker and inhibits the cell proliferation in hepatocellular carcinoma by macrophage migration inhibitory factor. Tumour Biol 37(3):3823–3830.  https://doi.org/10.1007/s13277-015-4213-5 CrossRefPubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2019

Authors and Affiliations

  1. 1.Department of Medical Biology and Genetics, Institute of Health SciencesMarmara UniversityIstanbulTurkey
  2. 2.Department of Gastroenterology, School of MedicineMarmara UniversityIstanbulTurkey
  3. 3.Institute of GastroenterologyMarmara UniversityIstanbulTurkey
  4. 4.Department of Medical Biology, School of MedicineMarmara UniversityIstanbulTurkey

Personalised recommendations