Hormones

pp 1–9 | Cite as

Relationship of lipid regulatory gene polymorphisms and dyslipidemia in a pediatric population: the CASPIAN III study

  • Silva Hovsepian
  • Shaghayegh Haghjooy Javanmard
  • Marjan Mansourian
  • Mohamadhasan Tajadini
  • Mahin Hashemipour
  • Roya Kelishadi
Original Article

Abstract

Objective

In this study, we aimed to assess the association between four variants in three genes whose association has been reported in adults but not in children. We evaluated the relationship of the GCKR (rs780094), GCKR (rs1260333), FADS (rs174547), and MLXIPL (rs3812316) polymorphisms with serum lipid levels in Iranian children.

Design

This cross-sectional study was conducted in a subpopulation of the CASPIAN III study. During this study, 550 frozen whole blood samples were selected randomly. Using the recorded information of selected cases, those with and without abnormal lipid levels were determined. Allelic and genotypic frequencies of GCKR (rs780094), GCKR (rs1260333), MLXIPL (rs3812316), and FADS (rs174547) polymorphisms were determined and compared in dyslipidemic and normal children. The association between the studied polymorphisms and lipid profiles was determined using logistic regression analysis.

Results

Prevalence of hypercholesterolemia, hypertriglyceridemia, high low-density lipoprotein cholesterol (LDL-C), and low high-density lipoprotein cholesterol (HDL-C) were 24.9, 34.5, 19.0, and 40.7%, respectively. Significant correlations were found between GCKR (rs780094) and GCKR (rs1260333) polymorphisms and cholesterol and triglyceride levels, between FADS (rs174547) polymorphism and level of triglyceride, and also between MLXIPL (rs3812316) and levels of HDL-C.

Conclusions

The results of this population-based study provide evidence for a relationship between lipid regulatory gene polymorphisms including GCKR (rs780094), GCKR (rs1260333), FADS (rs174547), and MLXIPL (rs3812316) with dyslipidemia in an Iranian population. These results could provide baseline information on as well as further insight into the genetic makeup of lipid profiles in Iranian children, which could be used for preventative strategies.

Keywords

Dyslipidemia Children Polymorphism Glucokinase regulatory protein MLX interacting protein-like protein FADS1 protein 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Juhola J, Magnussen CG, Viikari JS, Kähönen M, Hutri-Kähönen N, Jula A et al (2011) Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 159(4):584–590CrossRefPubMedGoogle Scholar
  2. 2.
    Kit BK, Kuklina E, Carroll MD, Ostchega Y, Freedman DS, Ogden CL (2015) Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999–2012. JAMA Pediatr 169(3):272–279CrossRefPubMedGoogle Scholar
  3. 3.
    Hovsepian S, Kelishadi R, Djalalinia S, Farzadfar F, Naderimagham S, Qorbani M (2015) Prevalence of dyslipidemia in Iranian children and adolescents: a systematic review. J Res Med Sci: off J Isfahan Univ Med Sci 20(5):503CrossRefGoogle Scholar
  4. 4.
    Ordovas JM (2006) Nutrigenetics, plasma lipids, and cardiovascular risk. J Am Diet Assoc 106(7):1074–1081CrossRefPubMedGoogle Scholar
  5. 5.
    Cole CB, Nikpay M, McPherson R (2015) Gene–environment interaction in dyslipidemia. Curr Opin Lipidol 26(2):133–138CrossRefPubMedGoogle Scholar
  6. 6.
    Parnell LD (2009) Gene–environment interactions and the impact on obesity and lipid profile phenotypes. Clin Lipidol 4(6):687–690CrossRefGoogle Scholar
  7. 7.
    Talmud PJ, Berglund L, Hawe EM, Waterworth DM, Isasi CR, Deckelbaum RE et al (2001) Age-related effects of genetic variation on lipid levels: The Columbia University BioMarkers Study. Pediatrics 108(3):e50CrossRefPubMedGoogle Scholar
  8. 8.
    Latsuzbaia A, Jaddoe VW, Hofman A, Franco OH, Felix JF (2016) Associations of genetic variants for adult lipid levels with lipid levels in children. The Generation R Study. J Lipid Res 57(12):2185–2192CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Christie S, Robiou-du-Pont S, Anand SS, Morrison KM, McDonald SD, Paré G et al (2017) Genetic contribution to lipid levels in early life based on 158 loci validated in adults: the FAMILY study. Sci Rep 7Google Scholar
  10. 10.
    Santos IR, Fernandes AP, Sousa MO, Ferreira CN, Gomes KB (2013) Genetic polymorphisms as a risk factor for dyslipidemia in children. J Pediatr Genet 2(2):69–75CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ellman N, Keswell D, Collins M, Tootla M, Goedecke JH (2015) Ethnic differences in the association between lipid metabolism genes and lipid levels in black and white South African women. Atherosclerosis 240(2):311–317CrossRefPubMedGoogle Scholar
  12. 12.
    Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336CrossRefPubMedGoogle Scholar
  13. 13.
    Uyeda K, Repa JJ (2006) Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4(2):107–110CrossRefPubMedGoogle Scholar
  14. 14.
    Nakayama K, Bayasgalan T, Tazoe F, Yanagisawa Y, Gotoh T, Yamanaka K et al (2010) A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum Genet 127(6):685–690CrossRefPubMedGoogle Scholar
  15. 15.
    Kelishadi R, Heshmat R, Motlagh ME, Majdzadeh R, Keramatian K, Qorbani M et al (2012) Methodology and early findings of the third survey of CASPIAN study: a national school-based surveillance of students’ high risk behaviors. Int J Prev Med 3(6):394PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zimmet P, Alberti G, Kaufman F, Tajima N (2007) The metabolic syndrome in children and adolescents. Lancet 369(9579):2059CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Motsko SP, Goehring EL, Tave A, Pezzullo JC, Jones JK (2010) Prevalence of pediatric dyslipidemia: comparison of a population-based claims database to national surveys. Pharmacoepidemiol Drug Saf 19(10):1031–1040CrossRefPubMedGoogle Scholar
  18. 18.
    Faria Neto JR, Bento VFR, Baena CP, Olandoski M, Gonçalves LGO, Abreu GA et al (2016) ERICA: prevalence of dyslipidemia in Brazilian adolescents. Rev Saude Publica 50Google Scholar
  19. 19.
    Yang S, Hwang JS, Park HK, Lee HS, Kim HS, Kim EY et al (2012) Serum lipid concentrations, prevalence of dyslipidemia, and percentage eligible for pharmacological treatment of Korean children and adolescents; data from the Korea National Health and Nutrition Examination Survey IV (2007–2009). PLoS One 7(12):e49253CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Al-Shehri SN, Saleh ZA, Salama MM, Hassan YM (2004) Prevalence of hyperlipidemia among Saudi school children in Riyadh. Ann Saudi Med 24(1):6–8CrossRefPubMedGoogle Scholar
  21. 21.
    Rerksuppaphol S, Rerksuppaphol L (2011) Prevalence of dyslipidemia in Thai schoolchildren. J Med Assoc Thail 94(6):710Google Scholar
  22. 22.
    Middelberg RP, Heath AC, Madden PA, Montgomery GW, Martin NG, Whitfield JB (2012) Evidence of differential allelic effects between adolescents and adults for plasma high-density lipoprotein. PloSone 7(4):e35605CrossRefGoogle Scholar
  23. 23.
    Johansen CT, Kathiresan S, Hegele RA (2011) Genetic determinants of plasma triglycerides. J Lipid Res 52(2):189–206CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hadarits F, Kisfali P, Mohás M, Maász A, Duga B, Janicsek I et al (2012) Common functional variants of APOA5 and GCKR accumulate gradually in association with triglyceride increase in metabolic syndrome patients. Mol Biol Rep 39(2):1949–1955CrossRefPubMedGoogle Scholar
  25. 25.
    Surakka I, Horikoshi M, Mägi R, Sarin A-P, Mahajan A, Lagou V et al (2015) The impact of low-frequency and rare variants on lipid levels. Nat Genet 47(6):589–597CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shang X, Song J, Liu F, Ma J, Wang H (2014) Association between rs780094 polymorphism in GCKR and plasma lipid levels in children and adolescents. Zhonghua Liu Xing Bing Xue Za Zhi 35(6):626–629PubMedGoogle Scholar
  27. 27.
    Horvatovich K, Bokor S, Polgar N, Kisfali P, Hadarits F, Jaromi L et al (2011) Functional glucokinase regulator gene variants have inverse effects on triglyceride and glucose levels, and decrease the risk of obesity in children. Diabetes Metab 37(5):432–439CrossRefPubMedGoogle Scholar
  28. 28.
    Lee H-J, Jang HB, Kim H-J, Ahn Y, Hong K-W, Cho SB et al (2015) The dietary monounsaturated to saturated fatty acid ratio modulates the genetic effects of GCKR on serum lipid levels in children. Clin Chim Acta 450:155–161CrossRefPubMedGoogle Scholar
  29. 29.
    Sparsø T, Andersen G, Nielsen T, Burgdorf K, Gjesing A, Nielsen A et al (2008) The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 51(1):70–75CrossRefPubMedGoogle Scholar
  30. 30.
    Sotos-Prieto M, Luben R, Khaw K-T, Wareham NJ, Forouhi NG (2014) The association between Mediterranean Diet Score and glucokinase regulatory protein gene variation on the markers of cardiometabolic risk: an analysis in the European Prospective Investigation into Cancer (EPIC)-Norfolk study. Br J Nutr 112(1):122–131CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S et al (2010) Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 30(11):2264–2276CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shen Y, Wu L, Xi B, Liu X, Zhao X, Cheng H et al (2013) GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children. PLoS One 8(1):e55350CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR et al (2008) Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40(2):149–151CrossRefPubMedGoogle Scholar
  34. 34.
    Nakayama K, Yanagisawa Y, Ogawa A, Ishizuka Y, Munkhtulga L, Charupoonphol P et al (2011) High prevalence of an anti-hypertriglyceridemic variant of the MLXIPL gene in Central Asia. J Hum Genet 56(12)Google Scholar
  35. 35.
    Been LF, Nath SK, Ralhan SK, Wander GS, Mehra NK, Singh J et al (2010) Replication of association between a common variant near melanocortin-4 receptor gene and obesity-related traits in Asian Sikhs. Obesity 18(2):425–429CrossRefPubMedGoogle Scholar
  36. 36.
    Vrablik M, Ceska R, Adamkova V, Peasey A, Pikhart H, Kubinova R et al (2008) MLXIPL variant in individuals with low and high triglyceridemia in white population in Central Europe. Hum Genet 124(5):553–555CrossRefPubMedGoogle Scholar
  37. 37.
    Polgár N, Járomi L, Csöngei V, Maász A, Sipeky C, Sáfrány E et al (2010) Triglyceride level modifying functional variants of GALTN2 and MLXIPL in patients with ischaemic stroke. Eur J Neurol 17(8):1033–1039CrossRefPubMedGoogle Scholar
  38. 38.
    Kelishadi R, Motlagh ME, Roomizadeh P, Abtahi S-H, Qorbani M, Taslimi M et al (2013) First report on path analysis for cardiometabolic components in a nationally representative sample of pediatric population in the Middle East and North Africa (MENA): the CASPIAN-III Study. Ann Nutr Metab 62(3):257–265CrossRefPubMedGoogle Scholar
  39. 39.
    Lattka E, Illig T, Koletzko B, Heinrich J (2010) Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol 21(1):64–69CrossRefPubMedGoogle Scholar
  40. 40.
    Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE et al (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41(1):56–65CrossRefPubMedGoogle Scholar
  41. 41.
    Standl M, Lattka E, Stach B, Koletzko S, Bauer C-P, von Berg A et al (2012) FADS1 FADS2 gene cluster, PUFA intake and blood lipids in children: results from the GINIplus andLISAplus studies. PLoS One 7(5):e37780CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Moltó-Puigmartí C, Jansen E, Heinrich J, Standl M, Mensink RP, Plat J et al (2013) Genetic variation in FADS genes and plasma cholesterol levels in 2-year-old infants: KOALA Birth Cohort Study. PLoS One 8(5):e61671CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Garcés C, de Oya I, Lasunción MA, López-Simón L, Cano B, de Oya M (2010) Sex hormone–binding globulin and lipid profile in pubertal children. Metabolism 59(2):166–171CrossRefPubMedGoogle Scholar
  44. 44.
    Aydın B, Winters SJ (2016) Sex hormone-binding globulin in children and adolescents. J Clin Res Pediatr Endocrinol 8(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Niroumand S, Dadgarmoghaddam M, Eghbali B, Abrishami M, Gholoobi A, Taghanaki HRB et al (2016) Cardiovascular disease risk factors profile in individuals with diabetes compared with non-diabetic subjects in north-east of Iran. Iran Red Crescent Med J 18(8):e29382CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Khajedaluee M, Dadgarmoghaddam M, Saeedi R, Izadi-Mood Z, Abrishami M (2014) The burden of diabetes in a developing country. Open J Prev Med 4(04):175CrossRefGoogle Scholar
  47. 47.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14CrossRefPubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2018

Authors and Affiliations

  • Silva Hovsepian
    • 1
  • Shaghayegh Haghjooy Javanmard
    • 2
  • Marjan Mansourian
    • 3
  • Mohamadhasan Tajadini
    • 2
  • Mahin Hashemipour
    • 4
  • Roya Kelishadi
    • 5
  1. 1.Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Emam Hossein Children’s HospitalIsfahan University of Medical SciencesIsfahanIran
  2. 2.Applied Physiology Research CenterIsfahan University of Medical SciencesIsfahanIran
  3. 3.Department of Biostatistics and Epidemiology, School of HealthIsfahan University of Medical SciencesIsfahanIran
  4. 4.Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan Endocrine and Metabolism Research CenterIsfahan University of Medical SciencesIsfahanIran
  5. 5.Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable DiseaseIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations