Hormones

pp 1–7 | Cite as

Diabetes and lipid metabolism

  • Vasilios G. Athyros
  • Michael Doumas
  • Konstantinos P. Imprialos
  • Konstantinos Stavropoulos
  • Eleni Georgianou
  • Alexandra Katsimardou
  • Asterios Karagiannis
Review Article

Abstract

The authors review the association between diabetes mellitus (DM) and aberrations of lipid metabolism related to DM, diabetic dyslipidemia (DD). DM is considered as a major health burden worldwide and one of the most important modifiable cardiovascular disease (CVD) risk factors. This applies to both the developed and the developing countries, especially the latter. While patients with type 1 DM, 10% of all DM cases, usually do not have dyslipidemia, DD is frequent among patients with type 2 DM (T2DM) (prevalence > 75%) and is mainly a mixed dyslipidemia [increase in triglycerides (TGs), low high-density lipoprotein cholesterol (HDL-C), and small-dense (atherogenic), low-density lipoprotein cholesterol (LDL-C) particles]. The components of DD, which is characterized by quantitative (mentioned above), qualitative, and kinetic abnormalities all contributing to CVD risk, are mostly related to insulin resistance. Statins, ezetimibe, and PCSK9 inhibitors can be used in monotherapy or consecutively in combinations if needed. Statins compose the main drug. For the residual CVD risk after statin treatment, the use of statin-fibrate combinations is indicated only in patients with mixed dyslipidemia. In conclusion, DD is a major health problem worldwide. It is a significant CVD risk factor and should be treated according to current guidelines. The means today exist to normalize all quantitative, qualitative, and kinetic aberrations of DD, thereby reducing CVD risk.

Keywords

Diabetes mellitus Lipid metabolism Diabetic dyslipidemia Epidemiology Pathophysiology Treatment Residual cardiovascular risk 

Notes

Compliance with ethical standards

Conflict of interest

VGA has given talks, attended conferences, and participated in trials sponsored by MSD, Sanofi, and Amgen. MD has given talks and attended conferences sponsored by Menarini, WinMedica, Bayer, Boehringer-Ingelheim, Merck, and Unipharma. AK has given talks, attended conferences, and participated in trials sponsored by WinMedica. The rest have no conflict of interest whatsoever.

References

  1. 1.
    Taskinen MR, Borén J (2015) New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239:483–495CrossRefPubMedGoogle Scholar
  2. 2.
    Guariguata L, Whiting DR, Hambleton I et al (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149CrossRefPubMedGoogle Scholar
  3. 3.
    Zimmet PZ, Magliano DJ, Herman WH et al (2014) Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2:56–64CrossRefPubMedGoogle Scholar
  4. 4.
    Whiting DR, Guariguata L, Weil C et al (2011) 2011 IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321CrossRefPubMedGoogle Scholar
  5. 5.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14CrossRefPubMedGoogle Scholar
  6. 6.
    Grundy SM, Benjamin IJ, Burke GL et al (1999) Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. AHA SCIENTIFIC STATEMENT. Circulation 100:1134–1146CrossRefPubMedGoogle Scholar
  7. 7.
    No authors listed 1999 Diabetes mellitus: a major risk factor for cardiovascular disease. A joint editorial statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Circulation 100:1132–1133Google Scholar
  8. 8.
    Vijayaraghavan K (2010) Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis 9:144CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Turner RC, Millns H, Neil HA et al (1988) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS 23). BMJ 316:823–828CrossRefGoogle Scholar
  10. 10.
    Farmer JA (2008) Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Diab Rep 8:71–77CrossRefPubMedGoogle Scholar
  11. 11.
    Bulut T, Demirel F, Metin A (2017) The prevalence of dyslipidemia and associated factors in children and adolescents with type 1 diabetes. J Pediatr Endocrinol Metab 30(2):181–187CrossRefPubMedGoogle Scholar
  12. 12.
    Taskinen MR (2005) Type 2 diabetes as a lipid disorder. Curr Mol Med 5:297–308CrossRefPubMedGoogle Scholar
  13. 13.
    Chapman MJ, Ginsberg HN, Amarenco P et al (2011) Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 32:1345–1361CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Isomaa B, Almgren P, Tuomi T et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689CrossRefPubMedGoogle Scholar
  15. 15.
    Dake AW, Sora ND (2016) Diabetic dyslipidemia review: an update on current concepts and management guidelines of diabetic dyslipidemia. Am J Med Sci 351:361–365CrossRefPubMedGoogle Scholar
  16. 16.
    Center for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States. http://www.cdc.gov/ diabetes/pubs/ statsreport14/national-diabetes-report-web.pdf; 2014 Accessed 20.9.17
  17. 17.
    Geiss LS, Wang J, Cheng YJ et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA 312: 1218–1226Google Scholar
  18. 18.
    Forouhi NG, Merrick D, Goyder E (2006) Diabetes prevalence in England, 2001—estimates from an epidemiological model. Diabetic Med 23:189–197CrossRefPubMedGoogle Scholar
  19. 19.
    Wild S, Roglic G, Green A et al (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053CrossRefPubMedGoogle Scholar
  20. 20.
    Arredondo A, De Icaza E (2011) The cost of diabetes in Latin America: evidence from Mexico. Value Health 14(Suppl 1):S85–S88CrossRefPubMedGoogle Scholar
  21. 21.
    Gujral UP, Pradeepa R, Weber MB, Narayan KM, Mohan V (2013) Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. Ann N Y Acad Sci 1281:51–63CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mohan V (2004) Why are Indians more prone to diabetes. J Assoc Physicians India 52:468–474PubMedGoogle Scholar
  23. 23.
    Williams GM, Long AE, Wilson IV et al (2016) Beta cell function and ongoing autoimmunity in long-standing, childhood onset type 1 diabetes. Diabetologia 59:2722–2726CrossRefPubMedGoogle Scholar
  24. 24.
    Long AE, Gillespie KM, Rokni S, Bingley PJ, Williams AJ (2012) Rising incidence of type 1 diabetes is associated with altered immunophenotype at diagnosis. Diabetes 61:683–686CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vergès B (2015) Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58:886–899CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Taskinen MR (2003) Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46:733–749CrossRefPubMedGoogle Scholar
  27. 27.
    Chahil TJ, Ginsberg HN, 2006 Diabetic dyslipidemia. Endocrinol Metab Clin North Am 35: 491–510, vii–viiiGoogle Scholar
  28. 28.
    Vergès B (2005) New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab 31:429–439CrossRefPubMedGoogle Scholar
  29. 29.
    Doucet J, Le Floch JP, Bauduceau B, Verny C (2012) GERODIAB: glycaemic control and 5-year morbidity/mortality of type 2 diabetic patients aged 70 years and older: 1. Description of the population at inclusion. Diabetes Metab 38:523–530CrossRefPubMedGoogle Scholar
  30. 30.
    Tziomalos K, Athyros VG, Karagiannis A, Kolovou GD, Mikhailidis DP (2009) Triglycerides and vascular risk: insights from epidemiological data and interventional studies. Curr Drug Targets 10:320–327CrossRefPubMedGoogle Scholar
  31. 31.
    Wang J, Stancakova A, Soininen P et al (2012) Lipoprotein subclass profiles in individuals with varying degrees of glucose tolerance: a population-based study of 9399 Finnish men. J Intern Med 272:562–572CrossRefPubMedGoogle Scholar
  32. 32.
    Arca M, Pigna G, Favoccia C (2012) Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr Vasc Pharmacol 10:684–686CrossRefPubMedGoogle Scholar
  33. 33.
    Mikhailidis DP, Elisaf M, Rizzo M et al (2011) European panel on low density lipoprotein (LDL) subclasses: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr Vasc Pharmacol 9:531–532CrossRefPubMedGoogle Scholar
  34. 34.
    Athyros VG, Alexandrides TK, Bilianou H et al (2017) The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An expert panel statement. Metabolism 71:17–32CrossRefPubMedGoogle Scholar
  35. 35.
    Abumrad NA, Davidson NO (2012) Role of the gut in lipid homeostasis. Physiol Rev 92:1061–1085CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xiao C, Lewis GF (2012) Regulation of chylomicron production in humans. Biochim Biophys Acta 1821:736–746CrossRefPubMedGoogle Scholar
  37. 37.
    Veilleux A, Grenier E, Marceau P et al (2014) Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler Thromb Vasc Biol 34:644–653CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao C, Dash S, Morgantini C et al (2014) New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis 233:608–615CrossRefPubMedGoogle Scholar
  39. 39.
    Axelsen M, Smith U, Eriksson JW, Taskinen MR, Jansson PA (1999) Postprandial hypertriglyceridemia and insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes. Ann Intern Med 131:27–31CrossRefPubMedGoogle Scholar
  40. 40.
    Borén J, Matikainen N, Adiels M, Taskinen MR (2014) Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta 431:131–142CrossRefPubMedGoogle Scholar
  41. 41.
    Fujioka Y, Ishikawa Y (2009) Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb 16:145–154CrossRefPubMedGoogle Scholar
  42. 42.
    Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2015) Genetic, epidemiologic and clinical data strongly suggest that fasting or non-fasting triglycerides are independent cardiovascular risk factors. Curr Med Res Opin 31:435–438CrossRefPubMedGoogle Scholar
  43. 43.
    Stefanutti C, Labbadia G, Athyros VG (2014) Hypertriglyceridaemia, postprandial lipaemia and non-HDL cholesterol. Curr Pharm Des 20:6238–6248CrossRefPubMedGoogle Scholar
  44. 44.
    Grundy SM, Cleeman JI, Merz CN et al (2004) Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 110:227–239CrossRefPubMedGoogle Scholar
  45. 45.
    Catapano AL, Reiner Z, De Backer G, European Society of Cardiology (ESC); European Atherosclerosis Society (EAS) et al (2011) ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217:3–46CrossRefPubMedGoogle Scholar
  46. 46.
    Stock J (2012) News from the literature: focus on joint ESC/EAS dyslipidemia guidelines. Atherosclerosis 220:42–44CrossRefPubMedGoogle Scholar
  47. 47.
    Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G (2017) Treatment of dyslipidemias to prevent cardiovascular disease in patients with type 2 diabetes. Curr Cardiol Rep 19:7CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stone NJ, Robinson JG, Lichtenstein AH, American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(25 Suppl 2):S1–S45Google Scholar
  49. 49.
    American Diabetes Association (2015) Cardiovascular disease and risk management. Diabetes Care 38(Supplement 1):S49–S57CrossRefGoogle Scholar
  50. 50.
    Piepoli MF, Hoes AW, Agewall S (2016) European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 252:207–274CrossRefPubMedGoogle Scholar
  51. 51.
    Jellinger PS, Handelsman Y, Rosenblit PD et al (2017) American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract 23(Suppl 2):1–87CrossRefPubMedGoogle Scholar
  52. 52.
    American Diabetes Association (2017) Cardiovascular disease and risk management. Sec. 9. In Standards of Medical Care in Diabetes-2017. Diabetes Care 40:S75–S87CrossRefGoogle Scholar
  53. 53.
    Cannon CP, Blazing MA, Giugliano RP, IMPROVE-IT Investigators et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2389CrossRefPubMedGoogle Scholar
  54. 54.
    Katsiki N, Athyros VG, Mikhailidis DP (2016) More news from IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial). Hormones (Athens) 15:5–7Google Scholar
  55. 55.
    Sabatine MS, Giugliano RP, Keech AC, FOURIER Steering Committee and Investigators et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722CrossRefPubMedGoogle Scholar
  56. 56.
    Katsiki N, Athyros VG, Mikhailidis DP, Mantzoros C (2017) Proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors: shaping the future after the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk (FOURIER) trial. Metabolism 74:43–46CrossRefPubMedGoogle Scholar
  57. 57.
    Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2017 Focused update of the 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol 70:1785–1822Google Scholar
  58. 58.
    Ridker PM, Revkin J, Amarenco P, SPIRE Cardiovascular Outcome Investigators et al (2017) Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med 376:1527–1539CrossRefPubMedGoogle Scholar
  59. 59.
    Fruchart JC, Sacks F, Hermans MP et al (2008) Residual Risk Reduction Initiative (R3I): The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diab Vasc Dis Res 5:319–335CrossRefPubMedGoogle Scholar
  60. 60.
    Kiran Musunuru K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 45:907–914CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. Open Cardiovasc Med J 5:24–34Google Scholar
  62. 62.
    Athyros VG, Doumas M, Karagiannis A (2016) Differential residual dyslipidemia/cardiovascular risk after statin treatment between Asian-Indians and western whites. Call for action. Indian Heart J 68:596–598CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Katsiki N, Koumaras C, Athyros VG, Karagiannis A (2012) Thinking beyond traditional cardiovascular risk factors: the role of arterial stiffness in targeting residual risk. Angiology 63:9–11CrossRefPubMedGoogle Scholar
  64. 64.
    Athyros VG, Wierzbicki AS (2014) Statin-fibrate combination therapy is safe and effective in normalizing lipid profile and in keeping cardiovascular event rates low. Curr Med Res Opin 30:57–58CrossRefPubMedGoogle Scholar
  65. 65.
    ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574CrossRefGoogle Scholar
  66. 66.
    Keech A, Simes RJ, Barter P, FIELD study investigators et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861CrossRefPubMedGoogle Scholar
  67. 67.
    Tenenbaum A, Medvedofsky D, Fisman EZ et al (2012) Cardiovascular events in patients received combined fibrate/statin treatment versus statin monotherapy: Acute Coronary Syndrome Israeli Surveys data. PLoS One 7:e35298CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rubins HB, Robins SJ, Collins D et al (2002) Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med 162:2597–2604CrossRefPubMedGoogle Scholar
  69. 69.
    Sacks FM, Carey VJ, Fruchart JC (2010) Combination lipid therapy in type 2 diabetes. N Engl J Med 363:692–694CrossRefPubMedGoogle Scholar
  70. 70.
    Tenenbaum A, Fisman EZ et al (2010) “If it ain’t broke, don’t fix it”: a commentary on the positive-negative results of the ACCORD lipid study. Cardiovasc Diabetol 9:24Google Scholar
  71. 71.
    Wierzbicki AS, Mikhailidis DP, Wray R, Schacter M, Cramb R, Simpson WG, Byrne CB (2003) Statin-fibrate combination: therapy for hyperlipidemia: a review. Curr Med Res Opin 19(3):155–168CrossRefPubMedGoogle Scholar
  72. 72.
    Athyros VG, Papageorgiou AA, Kontopoulos AG (2001) Statin-fibrate combinations in patients with combined hyperlipidemia. Atherosclerosis 155:263–264CrossRefPubMedGoogle Scholar
  73. 73.
    Athyros VG, Papageorgiou AA, Athyrou VV et al (2002) Atorvastatin versus four statin-fibrate combinations in patients with familial combined hyperlipidaemia. J Cardiovasc Risk 9:33–39CrossRefPubMedGoogle Scholar
  74. 74.
    Athyros VG, Papageorgiou AA, Hatzikonstandinou HA et al (1997) Safety and efficacy of long-term statin-fibrate combinations in patients with refractory familial combined hyperlipidemia. Am J Cardiol 80:608–613CrossRefPubMedGoogle Scholar
  75. 75.
    Mitsiou EK, Athyros VG, Karagiannis A, Mikhailidis DI (2012) Is there a role for hypolipidaemic drug therapy in the prevention or treatment of microvascular complications of diabetes? Open Cardiovasc Med J 6:28–32CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Czupryniak L, Joshi SR, Gogtay JA, Lopez M (2016) Effect of micronized fenofibrate on microvascular complications of type 2 diabetes: a systematic review. Expert Opin Pharmacother 17:1463–1473CrossRefPubMedGoogle Scholar
  77. 77.
    Balk EM, Lichtenstein AH 2017 Omega-3 fatty acids and cardiovascular disease: summary of the 2016 Agency of Healthcare Research and Quality Evidence Review. Nutrients 9.  https://doi.org/10.3390/nu9080865
  78. 78.
    European Medicines Agency 2013 European medicines agency confirms recommendation to suspend Tredaptive, Pelzont and Trevaclyn. January 18, 201Google Scholar
  79. 79.
    The HPS2-THRIVE Collaborative Group (2014) Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med 371:203–212CrossRefGoogle Scholar
  80. 80.
    Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP (2015) Nicotinic acid and new-onset diabetes. Horm Metab Res 47:544–545PubMedGoogle Scholar
  81. 81.
    Packard C, Caslake M, Shepherd J (2000) The role of small, dense low density lipoprotein (LDL): a new look. Int J Cardiol 74:S17–S22CrossRefPubMedGoogle Scholar
  82. 82.
    Rizzo M, Berneis K (2006) The clinical relevance of low-density-lipoproteins size modulation by statins. Cardiovasc Drugs Ther 20:205–217CrossRefPubMedGoogle Scholar
  83. 83.
    Ip S, Lichtenstein AH, Chung M, Lau J, Balk EM (2009) Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes. Ann Intern Med 150:474–484CrossRefPubMedGoogle Scholar
  84. 84.
    Gouni-Berthold I, Mikhailidis DP, Rizzo M (2012) Clinical benefits of ezetimibe use: is absence of proof, proof of absence? Expert Opin Pharmacother 13:1985–1988CrossRefPubMedGoogle Scholar
  85. 85.
    Superko HR, Berneis KK, Williams PT, Rizzo M, Wood PD (2005) Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. Am J Cardiol 96:1266–1272CrossRefPubMedGoogle Scholar
  86. 86.
    Simental-Mendía LE, Simental-Mendía M, Sánchez-García A et al (2017) Effect of fibrates on glycemic parameters: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol ResGoogle Scholar
  87. 87.
    Sahebkar A, Watts GF (2013) Fibrate therapy and circulating adiponectin concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Atherosclerosis 230:110–120CrossRefPubMedGoogle Scholar
  88. 88.
    Tsunoda T, Nozue T, Yamada M, Mizuguchi I, Sasaki M, Michishita I (2013) Effects of ezetimibe on atherogenic lipoproteins and glucose metabolism in patients with diabetes and glucose intolerance. Diabetes Res Clin Pract 100:46–52CrossRefPubMedGoogle Scholar
  89. 89.
    Flachs P, Rossmeisl M, Kopecky J (2014) The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol Res 63:S93–S118Google Scholar
  90. 90.
    Kostapanos MS, Liamis GL, Milionis HJ, Elisaf MS (2010) Do statins beneficially or adversely affect glucose homeostasis? Curr Vasc Pharmacol 8:612–631CrossRefPubMedGoogle Scholar
  91. 91.
    Kostapanos MS, Agouridis AP, Elisaf MS (2015) Variable effects of statins on glucose homeostasis parameters and their diabetogenic role. Diabetologia 58:1960–1961CrossRefPubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2018

Authors and Affiliations

  • Vasilios G. Athyros
    • 1
    • 2
  • Michael Doumas
    • 3
  • Konstantinos P. Imprialos
    • 1
  • Konstantinos Stavropoulos
    • 1
  • Eleni Georgianou
    • 1
  • Alexandra Katsimardou
    • 1
  • Asterios Karagiannis
    • 1
  1. 1.Second Propedeutic Department of Internal Medicine, Hippocration HospitalAristotle UniversityThessalonikiGreece
  2. 2.2nd Propedeutic Department of Internal Medicine, Medical SchoolAristotle UniversityThessalonikiGreece
  3. 3.Veteran Affairs Medical CenterGeorge Washington UniversityWashingtonUSA

Personalised recommendations