pp 1–11 | Cite as

The development of probiotics therapy to obesity: a therapy that has gained considerable momentum

Review Article


Obesity is a growing epidemic worldwide. The most frequent cause leading to the development of obesity is an imbalance between energy intake and energy expenditure. The gut microbiota is an environmental factor involved in obesity and metabolic disorders which reveals that obese animal and human subjects present alterations in the composition of the gut microbiota compared to their lean counterparts. Furthermore, evidence has so far demonstrated that the gut microbiota, which influences whole-body metabolism, by affecting energy balance, but also inflammation and gut barrier function, integrates peripheral and central food intake regulatory signals, thereby altering body weight. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or a protective role in the development of obesity. Though still a relatively nascent field of research, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of obesity. Various studies have described the beneficial effects of specific bacteria on the characteristics of obesity. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the notable advances and contributions in the field that may prove useful for identifying probiotics that target obesity and its related disorders.


Gut microbiota Obesity Probiotics Treatment Weight loss 



We thank Yue Cai for the critical review and important intellectual contributions to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Bouchard C (2000) Inhibition of food intake by inhibitors of fatty acid synthase. New Engl J Med 343:1888–1889CrossRefPubMedGoogle Scholar
  2. 2.
    Parekh PJ, Arusi E, Vinik AI et al (2014) The role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome. Front Endocrinol 5:47–47CrossRefGoogle Scholar
  3. 3.
    Moreno-Indias I, Cardona F, Tinahones FJ et al (2014) Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Rev Inst Med Trop SP 38:265–272Google Scholar
  4. 4.
    Nieuwdorp M, Gilijamse PW, Pai N et al (2014) Role of the microbiome in energy regulation and metabolism. Gastroenterology 146:1525–1533CrossRefPubMedGoogle Scholar
  5. 5.
    Flint HJ, Scott KP, Louis P et al (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastro Hepat 9:577–589CrossRefGoogle Scholar
  6. 6.
    Cesaro C, Tiso A, Prete AD et al (2011) Gut microbiota and probiotics in chronic liver diseases. Digest Liver Dis 43:431–438CrossRefGoogle Scholar
  7. 7.
    Scarpellini E, Campanale M, Leone D et al (2012) Gut microbiota and obesity. Digest Dis 30:196–200CrossRefGoogle Scholar
  8. 8.
    Ley RE, Peterson DA, Gordon et al (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRefPubMedGoogle Scholar
  9. 9.
    Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefPubMedGoogle Scholar
  10. 10.
    Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zaneveld J, Turnbaugh PJ, Lozupone C et al (2008) Host-bacterial coevolution and the search for new drug targets. Curr Opin Chem Biol 12:109–114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kinross JM, Roon ACV, Holmes E et al (2008) The human gut microbiome: implications for future health care. Curr Gastroen Rep 10:396–403CrossRefGoogle Scholar
  13. 13.
    Dethlefsen L, Mcfallngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818CrossRefPubMedGoogle Scholar
  14. 14.
    Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035s–1045sCrossRefPubMedGoogle Scholar
  15. 15.
    Palmer C, Bik EM, Digiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Björkstén B (2004) Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin Immun 25:257–270CrossRefGoogle Scholar
  17. 17.
    Ly NP, Litonjua A, Gold DR et al (2011) Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immu 127:1087–1094CrossRefGoogle Scholar
  18. 18.
    Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591CrossRefPubMedGoogle Scholar
  19. 19.
    Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedPubMedCentralGoogle Scholar
  20. 20.
    Koren O, Spor A, Felin J et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 108(Suppl 1):4592–4598CrossRefPubMedGoogle Scholar
  21. 21.
    Koren O, Goodrich JK, Cullender TC et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dibaise JK, Zhang H, Crowell MD et al (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83:460–469CrossRefPubMedGoogle Scholar
  23. 23.
    Salminen S, Bouley C, Boutron-Ruault MC et al (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(Suppl 1):147–171CrossRefGoogle Scholar
  24. 24.
    Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroen Rep 11:307–313CrossRefGoogle Scholar
  25. 25.
    Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6799–6806CrossRefGoogle Scholar
  26. 26.
    Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bäckhed F, Manchester JK, Semenkovich CF et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ley RE, Turnbaugh PJ, Klein S et al (2007) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefGoogle Scholar
  29. 29.
    Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMedGoogle Scholar
  30. 30.
    Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Le CE, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefGoogle Scholar
  32. 32.
    Cotillard A, Kennedy SP, Kong LC et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588CrossRefPubMedGoogle Scholar
  33. 33.
    Lee HY, Park JH, Seok SH et al (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. BBA-Mol Cell Biol L 1761:736–744CrossRefGoogle Scholar
  34. 34.
    Lee K, Paek K, Lee HY et al (2007) Antiobesity effect of trans -10, cis -12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103:1140–1146CrossRefPubMedGoogle Scholar
  35. 35.
    Park SY, Seong KS, Lim SD (2016) Anti-obesity effect of yogurt fermented by Lactobacillus plantarum Q180 in diet-induced obese rats. Korean J Food Sci o Anim Resour 36:77–83CrossRefGoogle Scholar
  36. 36.
    Karlsson CL, Molin G, Fåk F et al (2011) Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. Brit J Nutr 106:887–895CrossRefPubMedGoogle Scholar
  37. 37.
    Park JE, Oh SH, Cha YS (2014) Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J Appl Microbiol 116:145–156CrossRefPubMedGoogle Scholar
  38. 38.
    Salah RB, Trabelsi I, Hamden K et al (2013) Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe 23:55–61CrossRefPubMedGoogle Scholar
  39. 39.
    Takemura N, Okubo T, Sonoyama K (2010) Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med 235:849–856CrossRefGoogle Scholar
  40. 40.
    Kim SW, Park KY, Kim B et al (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 431:258–263CrossRefPubMedGoogle Scholar
  41. 41.
    Ji YS, Kim HN, Park HJ et al (2012) Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3:13–22CrossRefPubMedGoogle Scholar
  42. 42.
    Miyoshi M, Ogawa A, Higurashi S et al (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53:599–606CrossRefPubMedGoogle Scholar
  43. 43.
    Yoo S-R, Kim YJ, Park DY et al (2013) Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 21:2571–2578CrossRefPubMedGoogle Scholar
  44. 44.
    Park DY, Ahn YT, Park SH et al (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8:e59470–e59470CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kang JH, Yun SI, Park MH et al (2012) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8:e54617–e54617CrossRefGoogle Scholar
  46. 46.
    Murphy EF (2013) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62:220–226CrossRefPubMedGoogle Scholar
  47. 47.
    Tanida M, Jiao S, Maeda K et al (2008) High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes Res Clin Pract 2:159–169CrossRefGoogle Scholar
  48. 48.
    Zhao X, Higashikawa F, Noda M et al (2012) The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice. PLoS One 7:e30696CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cano PG, Santacruz A, Moya Á et al (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 7:e41079CrossRefGoogle Scholar
  50. 50.
    Yin YN, Yu QN, Liu XW et al (2010) Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroentero 16:3394–3401CrossRefGoogle Scholar
  51. 51.
    Reichold A, Brenner SA, Spruss A et al (2014) Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25:118–125CrossRefPubMedGoogle Scholar
  52. 52.
    Chen J, Wang R, Li XF et al (2012) Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Brit J Nutr 107:1429–1434CrossRefPubMedGoogle Scholar
  53. 53.
    Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Everard A, Matamoros S, Geurts L et al (2014) Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 5:01011–01014CrossRefGoogle Scholar
  55. 55.
    Wang J, Tang H, Zhang C et al (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. Isme J 9:1–15CrossRefPubMedGoogle Scholar
  56. 56.
    Savcheniuk O, Kobyliak N, Kondro M et al (2014) Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. Bmc Complem Altern M 14:1–17CrossRefGoogle Scholar
  57. 57.
    Poutahidis T, Kleinewietfeld M, Smillie C et al (2013) Microbial reprogramming inhibits Western diet-associated obesity. PLoS One 8:e68596–e68596CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    An HM, Park SY, Lee DK et al (2011) Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis 10:341–351CrossRefGoogle Scholar
  59. 59.
    Alard J, Lehrter V, Rhimi M et al (2015) Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol 111:1207–1214Google Scholar
  60. 60.
    Derrien M, Vaughan EE, Plugge CM et al (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr 54:1469–1476CrossRefGoogle Scholar
  61. 61.
    Belzer C, Vos WMD (2012) Microbes inside—from diversity to function: the case of Akkermansia. Isme J 6:1449–1458CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kobyliak N, Conte C, Cammarota G et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:1–13CrossRefGoogle Scholar
  63. 63.
    Sanchez M, Panahi S, Tremblay A (2014) Childhood obesity: a role for gut microbiota? Int J Environ Res Public Health 12:162–175CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Salaj R, Stofilová J, Soltesová A et al (2013) The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet. Scientific World J 2013:1653–1656CrossRefGoogle Scholar
  65. 65.
    Woodard GA, Encarnacion B, Downey JR et al (2009) Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg 13:1198–1204CrossRefPubMedGoogle Scholar
  66. 66.
    Kadooka Y, Sato M, Imaizumi K et al (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64:636–643CrossRefPubMedGoogle Scholar
  67. 67.
    Kadooka Y, Sato M, Ogawa A et al (2013) Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Brit J Nutr 110:1–8CrossRefGoogle Scholar
  68. 68.
    Omar JM, Chan YM, Jones ML et al (2013) Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Func Foods 5:116–123CrossRefGoogle Scholar
  69. 69.
    Jung SP, Lee KM, Kang JH et al (2013) Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med 34:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sharafedtinov KK, Plotnikova OA, Alexeeva RI et al (2013) Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—a randomized double-blind placebo-controlled pilot study. Nutr J 12:1–11CrossRefGoogle Scholar
  71. 71.
    Luoto R, Kalliomäki M, Laitinen K et al (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes 34:1531–1537CrossRefGoogle Scholar
  72. 72.
    Sanchez M, Darimont C, Drapeau V et al (2014) Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Brit J Nutr 111:1507–1519CrossRefPubMedGoogle Scholar
  73. 73.
    Kang Y, Zhang X, Cai Y et al (2016) Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Rev Med Microbiol 27:141–152CrossRefGoogle Scholar
  74. 74.
    Kang YB, Cai Y, Zhang H (2016) Gut microbiota and allergy/asthma: from pathogenesis to new therapeutic strategies. Allergol Immunopathol 45:305–309CrossRefGoogle Scholar
  75. 75.
    Kang Y, Cai Y, Zhang X et al (2016) Altered gut microbiota in RA: implications for treatment. Z Rheumatol 76:451–457CrossRefGoogle Scholar
  76. 76.
    Kang Y, Cai Y (2017) Gut microbiota and depression: from pathogenesis to new therapeutic strategies. Rev Med Microbiol 28:56–62CrossRefGoogle Scholar
  77. 77.
    Kang Y, Cai Y (2017) Gut microbiota and hepatitis B virus-induced chronic liver disease: implications for faecal microbiota transplantation therapy. J Hosp Infect 96:342–348CrossRefPubMedGoogle Scholar
  78. 78.
    Kang Y, Cai Y (2017) Future prospect of faecal microbiota transplantation as a potential therapy in asthma. Allergol Immunopathol. http://www.elsevier.es/en-revista-allergologia-et-immunopathologia-105-linkresolver-future-prospect-faecal-microbiota-transplantation-S0301054617300940. Accessed: 9 Sept 2017

Copyright information

© Hellenic Endocrine Society 2018

Authors and Affiliations

  1. 1.School of Basic Medical SciencesShanxi Medical UniversityTaiyuanChina
  2. 2.Medical FacultyKunming University of Science and TechnologyKunmingChina
  3. 3.Genetics and Pharmacogenomics LaboratoryKunming University of Science and TechnologyKunmingChina
  4. 4.Pathogen Biology LaboratoryKunming University of Science and TechnologyKunmingChina

Personalised recommendations