Advertisement

Sarcopenia and osteoporosis in older people: a systematic review and meta-analysis

  • Barbara Rubek Nielsen
  • Jawdat Abdulla
  • Hanne Elkjær Andersen
  • Peter Schwarz
  • Charlotte Suetta
Review

Abstract

Background

Age-related loss of muscle and bone (sarcopenia and osteoporosis), increases the risk of falls and fractures and consequently leads to a substantial economic burden for the society. The combined condition, osteosarcopenia, may identify patients at a higher risk of those outcomes and could be relevant for assessment and treatment in clinical practice.

Aim

To evaluate the current knowledge of the prevalence of osteosarcopenia and the fracture risk in older people.

Method

A systematic literature review was conducted until 10th March 2018. A total of 1105 papers were detected, whereof 1049 and 29 were excluded by title/abstracts and full-text assessment, respectively. Twenty-seven original papers were included in the systematic review, whereof 17 were suitable for meta-analysis.

Results

The prevalence of osteosarcopenia varied (5–37%) depending on the classification of sarcopenia and whether participants were classified initially according to sarcopenia or osteoporosis. In patients with low-energy osteoporotic fractures, sarcopenia was present in 7.8–58% and 1.3–96.3% of the cases, women and men, respectively. The meta-analysis of prevalence of sarcopenia in patients with low-energy fracture (n = 9) was 46% (95% CI 44, 48; p < 0.001). The relative risk of fracture (sarcopenic versus non-sarcopenic) in meta-analysis of four studies was 1.37 (95% CI 1.18, 1.59; p < 0.001). Mean bone mineral density (n = 5) and T-score (n = 3) of femoral neck was significantly lower in sarcopenic participants [− 0.07 g/cm2 (95% CI 0.08, 0.06) and − 0.34 (95% CI − 0.46, − 0.23), respectively].

Conclusion

Osteosarcopenia is frequent and the relative risk of fracture is higher among sarcopenic patients. A standard and strict classification of sarcopenia is needed to assess its true relationship and consequences.

Keywords

Sarcopenia Osteoporosis Sarcopenia Osteosarcopenia Fracture Older 

Notes

Compliance with ethical standards

Conflict of interest

Barbara Rubek Nielsen (BRN), Jawdat Abdulla (JA), Hanne Elkjær Andersen (HEA), Peters Schwarz (PS) and Charlotte Suetta (CS) declare that they have no conflict of interest, that the study was not founded.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All the authors certify that they comply with the standard ethical guidelines for authorship and publishing.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Frisoli A Jr, Chaves PH, Ingham SJ, Fried LP (2011) Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 48(4):952–957CrossRefPubMedGoogle Scholar
  2. 2.
    Di Monaco M, Vallero F, Di Monaco R, Tappero R (2011) Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 52(1):71–74CrossRefPubMedGoogle Scholar
  3. 3.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res Off J Am Soc Bone Miner Res 22(3):465–475CrossRefGoogle Scholar
  4. 4.
    Marks R (2010) Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009. Int J Gen Med 3:1–17PubMedPubMedCentralGoogle Scholar
  5. 5.
    Binkley N, Buehring B (2009) Beyond FRAX: it’s time to consider “sarco-osteopenia”. J Clin Densitometry Off J Int Soc Clin Densitometry 12(4):413–416CrossRefGoogle Scholar
  6. 6.
    Rosenberg I (1989) Summary comments: epidemiological and methodological problems in determining nutritional status in older persons. Am J Clin Nutr 50:1231–1233CrossRefGoogle Scholar
  7. 7.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763CrossRefPubMedGoogle Scholar
  8. 8.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM et al (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age Ageing 39(4):412–423CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256CrossRefPubMedGoogle Scholar
  10. 10.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol Ser A Biol Sci Med Sci 69(5):547–558CrossRefGoogle Scholar
  11. 11.
    Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51(11):1602–1609CrossRefPubMedGoogle Scholar
  12. 12.
    Reijnierse EM, Trappenburg MC, Blauw GJ, Verlaan S, de van der Schueren MA, Meskers CG, Maier AB (2016) Common ground? The concordance of sarcopenia and frailty definitions. J Am Med Dir Assoc 17(4):371.e377CrossRefGoogle Scholar
  13. 13.
    Masanes F, Rojano ILX, Salva A, Serra-Rexach JA, Artaza I, Formiga F, Cuesta F, Lopez Soto A, Ruiz D, Cruz-Jentoft AJ (2017) Cut-off points for muscle mass—not grip strength or gait speed—determine variations in sarcopenia prevalence. J Nutr Health Aging 21(7):825–829CrossRefPubMedGoogle Scholar
  14. 14.
    WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  15. 15.
    Binkley N, Krueger D, Buehring B (2013) What’s in a name revisited: should osteoporosis and sarcopenia be considered components of “dysmobility syndrome?”. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 24(12):2955–2959CrossRefGoogle Scholar
  16. 16.
    Hill KD, Farrier K, Russell M, Burton E (2017) Dysmobility syndrome: current perspectives. Clin Interv Aging 12:145–152CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smoliner C, Sieber CC, Wirth R (2014) Prevalence of sarcopenia in geriatric hospitalized patients. J Am Med Dir Assoc 15(4):267–272CrossRefPubMedGoogle Scholar
  19. 19.
    Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1–2):136CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 17(12):1726–1733CrossRefGoogle Scholar
  21. 21.
    Hamrick M (2010) JMNI special issue: basic science and mechanisms of muscle–bone interactions. J Musculoskelet Neuronal Interact 10(1):1–2PubMedGoogle Scholar
  22. 22.
    Chien KR, Karsenty G (2005) Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120(4):533–544CrossRefPubMedGoogle Scholar
  23. 23.
    Sharir A, Stern T, Rot C, Shahar R, Zelzer E (2011) Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138(15):3247–3259CrossRefPubMedGoogle Scholar
  24. 24.
    Kaji H (2014) Interaction between muscle and bone. J Bone Metab 21(1):29–40CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kaji H (2013) Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care 16(3):272–277CrossRefPubMedGoogle Scholar
  26. 26.
    Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116(5):687–695CrossRefPubMedGoogle Scholar
  27. 27.
    Edwards MH, Dennison EM, Sayer AA, Fielding R, Cooper C (2015) Osteoporosis and sarcopenia in older age. Bone 80:126–130CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, Moore MM, Bruce CJ, Greason KL, Suri RM, Khosla S et al (2016) Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab 23(6):1207–1215CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res 26(2):229–238CrossRefGoogle Scholar
  30. 30.
    Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2013) Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42(2):203–209CrossRefPubMedGoogle Scholar
  31. 31.
    Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, Tosato M, Bernabei R, Onder G (2012) Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc 13(2):121–126CrossRefPubMedGoogle Scholar
  32. 32.
    Cawthon PM, Blackwell TL, Cauley J, Kado DM, Barrett-Connor E, Lee CG, Hoffman AR, Nevitt M, Stefanick ML, Lane NE et al (2015) Evaluation of the usefulness of consensus definitions of sarcopenia in older men: results from the observational osteoporotic fractures in men cohort study. J Am Geriatr Soc 63(11):2247–2259CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr (Edinburgh, Scotland) 31(5):652–658CrossRefGoogle Scholar
  34. 34.
    Scott D, Hayes A, Sanders KM, Aitken D, Ebeling PR, Jones G (2014) Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 25(1):187–193CrossRefGoogle Scholar
  35. 35.
    Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103(2A):20S–25S (discussion 25S-26S) CrossRefPubMedGoogle Scholar
  36. 36.
    Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353(9155):802–805CrossRefPubMedGoogle Scholar
  37. 37.
    van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29(6):517–522CrossRefPubMedGoogle Scholar
  38. 38.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Locquet M, Beaudart C, Bruyere O, Kanis JA, Delandsheere L, Reginster JY (2018) Bone health assessment in older people with or without muscle health impairment. Osteoporos Int 29(5):1057–1067.  https://doi.org/10.1007/s00198-018-4384-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28(5):895–899CrossRefPubMedGoogle Scholar
  41. 41.
    Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, Montero-Odasso M, Gunawardene P, Demontiero O, Duque G (2015) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16(4):290–295CrossRefPubMedGoogle Scholar
  42. 42.
    Buehring B, Krueger D, Binkley N (2013) Effect of including historical height and radius BMD measurement on sarco-osteoporosis prevalence. J Cachexia Sarcopenia Muscle 4(1):47–54CrossRefPubMedGoogle Scholar
  43. 43.
    Waters DL, Hale L, Grant AM, Herbison P, Goulding A (2010) Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 21(2):351–357CrossRefGoogle Scholar
  44. 44.
    Gentil P, Lima RM, de Oliveira RJ, Pereira RW, Reis VM (2007) Association between femoral neck bone mineral density and lower limb fat-free mass in postmenopausal women. J Clin Densitometry Off J Int Soc Clin Densitometry 10(2):174–178CrossRefGoogle Scholar
  45. 45.
    Patil R, Uusi-Rasi K, Pasanen M, Kannus P, Karinkanta S, Sievanen H (2013) Sarcopenia and osteopenia among 70-80-year-old home-dwelling Finnish women: prevalence and association with functional performance. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 24(3):787–796CrossRefGoogle Scholar
  46. 46.
    Kirchengast S, Huber J (2012) Sex-specific associations between soft tissue body composition and bone mineral density among older adults. Ann Hum Biol 39(3):206–213CrossRefPubMedGoogle Scholar
  47. 47.
    Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA (2010) Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch Gerontol Geriatr 51(3):295–298CrossRefPubMedGoogle Scholar
  48. 48.
    Gillette-Guyonnet S, Nourhashemi F, Lauque S, Grandjean H, Vellas B (2000) Body composition and osteoporosis in elderly women. Gerontology 46(4):189–193CrossRefPubMedGoogle Scholar
  49. 49.
    Iolascon G, Moretti A, Giamattei MT, Migliaccio S, Gimigliano F (2015) Prevalent fragility fractures as risk factor for skeletal muscle function deficit and dysmobility syndrome in post-menopausal women. Aging Clin Exp Res 27(Suppl 1):S11–S16CrossRefPubMedGoogle Scholar
  50. 50.
    Di Monaco M, Castiglioni C, De Toma E, Gardin L, Giordano S, Di Monaco R, Tappero R (2015) Presarcopenia and sarcopenia in hip-fracture women: prevalence and association with ability to function in activities of daily living. Aging Clin Exp Res 27(4):465–472CrossRefPubMedGoogle Scholar
  51. 51.
    Di Monaco M, Castiglioni C, Di Carlo S (2018) Lean mass and functional recovery in men with hip fracture: a short-term prospective pilot study. Am J Phys Med Rehabil 97(6):401–406.  https://doi.org/10.1097/PHM.0000000000000875 CrossRefPubMedGoogle Scholar
  52. 52.
    Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A (2007) Muscle mass and functional recovery in men with hip fracture. Am J Phys Med Rehabil 86(10):818–825CrossRefPubMedGoogle Scholar
  53. 53.
    Clynes MA, Edwards MH, Buehring B, Dennison EM, Binkley N, Cooper C (2015) Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcif Tissue Int 97(5):445–452CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gonzalez-Montalvo JI, Alarcon T, Gotor P, Queipo R, Velasco R, Hoyos R, Pardo A, Otero A (2016) Prevalence of sarcopenia in acute hip fracture patients and its influence on short-term clinical outcome. Geriatr Gerontol Int 16(9):1021–1027CrossRefPubMedGoogle Scholar
  55. 55.
    Fiatarone Singh MA, Singh NA, Hansen RD, Finnegan TP, Allen BJ, Diamond TH, Diwan AD, Lloyd BD, Williamson DA, Smith EU et al (2009) Methodology and baseline characteristics for the sarcopenia and hip fracture study: a 5-year prospective study. J Gerontol Ser A Biol Sci Med Sci 64(5):568–574CrossRefGoogle Scholar
  56. 56.
    Steihaug OM, Gjesdal CG, Bogen B, Kristoffersen MH, Lien G, Ranhoff AH (2017) Sarcopenia in patients with hip fracture: a multicenter cross-sectional study. PLoS One 12(9):e0184780CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Landi F, Calvani R, Ortolani E, Salini S, Martone AM, Santoro L, Santoliquido A, Sisto A, Picca A, Marzetti E (2017) The association between sarcopenia and functional outcomes among older patients with hip fracture undergoing in-hospital rehabilitation. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 28(5):1569–1576CrossRefGoogle Scholar
  58. 58.
    Hars M, Biver E, Chevalley T, Herrmann F, Rizzoli R, Ferrari S, Trombetti A (2016) Low lean mass predicts incident fractures independently from FRAX: a prospective cohort study of recent retirees. J Bone Miner Res Off J Am Soc Bone Miner Res 31(11):2048–2056CrossRefGoogle Scholar
  59. 59.
    Sjoblom S, Suuronen J, Rikkonen T, Honkanen R, Kroger H, Sirola J (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75(2):175–180CrossRefPubMedGoogle Scholar
  60. 60.
    Schaap LA, van Schoor NM, Lips P, Visser M (2017) Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures; the Longitudinal Aging Study Amsterdam. J Gerontol A Biol Sci Med Sci.  https://doi.org/10.1093/gerona/glx245 PubMedGoogle Scholar
  61. 61.
    Gonnelli S, Caffarelli C, Cappelli S, Rossi S, Giordano N, Nuti R (2014) Gender-specific associations of appendicular muscle mass with BMD in elderly Italian subjects. Calcif Tissue Int 95(4):340–348CrossRefPubMedGoogle Scholar
  62. 62.
    Lima RM, Bezerra LM, Rabelo HT, Silva MA, Silva AJ, Bottaro M, de Oliveira RJ (2009) Fat-free mass, strength, and sarcopenia are related to bone mineral density in older women. J Clin Densitometry Off J Int Soc Clin Densitometry 12(1):35–41CrossRefGoogle Scholar
  63. 63.
    Pereira FB, Leite AF, de Paula AP (2015) Relationship between pre-sarcopenia, sarcopenia and bone mineral density in elderly men. Arch Endocrinol Metab 59(1):59–65CrossRefPubMedGoogle Scholar
  64. 64.
    Wannenes F, Papa V, Greco EA, Fornari R, Marocco C, Baldari C, Di Luigi L, Emerenziani GP, Poggiogalle E, Guidetti L et al (2014) Abdominal fat and sarcopenia in women significantly alter osteoblasts homeostasis in vitro by a WNT/beta-catenin dependent mechanism. Int J Endocrinol 2014:278316CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bijlsma AY, Meskers MC, Molendijk M, Westendorp RG, Sipila S, Stenroth L, Sillanpaa E, McPhee JS, Jones DA, Narici M et al (2013) Diagnostic measures for sarcopenia and bone mineral density. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 24(10):2681–2691CrossRefGoogle Scholar
  66. 66.
    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12(6):403–409CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Geriatric Medicine Society 2018

Authors and Affiliations

  • Barbara Rubek Nielsen
    • 1
  • Jawdat Abdulla
    • 1
  • Hanne Elkjær Andersen
    • 1
  • Peter Schwarz
    • 2
  • Charlotte Suetta
    • 3
  1. 1.Medical Department MAmager and Hvidovre HospitalGlostrupDenmark
  2. 2.Department of EndocrinologyRigshospitalet and Faculty of Health Sciences, Copenhagen UniversityCopenhagenDenmark
  3. 3.Department of Geriatric MedicineFrederiksberg and Bispebjerg Hospital and Faculty of Health Sciences, Copenhagen UniversityCopenhagenDenmark

Personalised recommendations