Advertisement

Metallorganic reactions in the polytropic microreactors

  • Min Fu
  • Leslaw MleczkoEmail author
Review
  • 13 Downloads

Abstract

High exothermicity, unstable intermediates, high reaction rates are the features that make metallorganic reactions very challenging, especially in commercial operation. No wonder that there is a large interest for the alternative production technology. This paper reviews a research program by Bayer on metallorganic reactions in microreactors. Selected aspects of use of micro-reaction technology for this reaction class are discussed. Two operational issues, i.e. temperature control and clogging are highlighted. Furthermore, the design concept of a MRT based commercial unit and its economics are discussed.

Keywords

Metallorganic reaction Polytropic microreactor Temperature control Clogging Commercial unit 

Notes

Acknowledgments

In this paper we summarized results obtained over the long time by a large team of colleagues. We can’t name them all but we would like to thank explicitly Dres S. Peper who analyzed the solubility of Li-salts, T. Westermann who studied temperature control and Shizhe Tian who dealt with economic evaluation.

References

  1. 1.
    Wolf A, Michele V, Schlüter OF-K, Herbstritt F, Heck J, Mleczko L (2015). Chem Eng Technol 38(11):2017–2024CrossRefGoogle Scholar
  2. 2.
    Fu M, Luan W, Tu S-T, Mleczko L (2015) J Nanomater 842365/1–842365/9Google Scholar
  3. 3.
    Lu H, Hoheisel W, Mleczko L, Nowak S Continuous synthesis of high quantum yield InP/ZnS nanocrystals. (2014) EP2785897A1, Oct.Google Scholar
  4. 4.
    Henig M (2011) Process, 2011. http://www.process-worldwide.com. Accessed 10/20/2010
  5. 5.
    Buchholz S, Mleczko L (2008). VDI-Ber 2039:177–181Google Scholar
  6. 6.
    Ji G, Ding C, Zhang G, Ji S, Ji G, Ji X, Yang H (2014) Method utilizing micro-channel to prepare tris(2-chloroethyl)phosphite. CN104119374A, OctGoogle Scholar
  7. 7.
    Mleczko L, Zhao D (2015) Technology for Continuous Production of Fine Chemicals, A Case Study for Low Temperature Lithiation Reactions. In: Managing Hazardous Reactions and Compounds in Process Chemistry; Pesti, J. A., Abdel-Magid, A. F. (Eds). American Chemical Society: Washington, DCGoogle Scholar
  8. 8.
    Tian S, Fu M, Hoheisel W, Mleczko L (2016). Chem Eng J 289:365–373CrossRefGoogle Scholar
  9. 9.
    Thaisrivongs DA, Naber JR, McMullen JP (2016). Org Process Res Dev 20:1997–2004CrossRefGoogle Scholar
  10. 10.
    Murray PRD, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV (2013). Org Process Res Dev 17:1192–1108CrossRefGoogle Scholar
  11. 11.
    Yoshida J (2009) Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley:New York,Google Scholar
  12. 12.
    Kim H, Min K-I, Inoue K, Im DJ, Kim D-P, Yoshida J-i (2016). Science 352:691–694CrossRefGoogle Scholar
  13. 13.
    Yoshida J-i, Takahashi Y, Nagaki A (2013). Chem Commun 49:9896–9904CrossRefGoogle Scholar
  14. 14.
    Nagaki A, Ichinari D, Yoshida J-i (2014). J Am Chem Soc 136(35):12245–12448CrossRefGoogle Scholar
  15. 15.
    Hafner A, Meisenbach M, Sedelmeier J (2016). Org Lett 18(15):3630–3633CrossRefGoogle Scholar
  16. 16.
    Hafner A, Filipponi P, Piccioni L, Meisenbach M, Schenkel B, Venturoni F, Sedelmeier J (2016). Org Process Res Dev 20:1833–1837CrossRefGoogle Scholar
  17. 17.
    Laue S, Haverkamp V, Mleczko L (2016). Org Process Res Dev 20:480–486CrossRefGoogle Scholar
  18. 18.
    Xie D, Zhou J, Tian S, Mleczko L, Zhou X (2016). Chem Eng Technol 39(8):1451–1456CrossRefGoogle Scholar
  19. 19.
    Laue S, Haverkamp V, Frye M, Michele V, Mleczko L (2007) Process for continuously preparing difluorobenzene derivatives with long operating times. WO2007054213A1, MayGoogle Scholar
  20. 20.
    Liu T, Yu F (2010) Continuous reacting device and method for strong exothermic reaction. CN101757881A, JuneGoogle Scholar
  21. 21.
    Westermann T, Mleczko L (2016). Org Process Res Dev 20(2):487–494CrossRefGoogle Scholar
  22. 22.
    Harrington PJ (2011) Pharmaceutical process chemistry for synthesis: rethinking the routes to scale-up. Wiley: New York, pp 304–305Google Scholar
  23. 23.
    Oppenheimer J Methods of isolating 4-chloro-2-fluoro-3-substituted-phenylboronic acids. (2014) US8822730B2, SepGoogle Scholar
  24. 24.
    Hessel V, Kralisch D, Kockmann N (2015) Novel process windows. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Nogaki A, Yoshida J-I (2014) In: Luisi R, Capriati V (eds) Lithium compounds in organic synthesis: from fundamentals to applications. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Hunter SM, Susanne F, Whitten R, Hartwig T, Schilling M (2018). Tetrahedron 74:3176–3182CrossRefGoogle Scholar
  27. 27.
    Haber J, Jiang B, Maeder T, Borhani N, Thome J, Renken A, Kiwi-Minskera L (2014). Chem Eng Process Process Intensif 84:14–23CrossRefGoogle Scholar
  28. 28.
    Hartman RL (2012). Org Process Res Dev 16(5):870–887CrossRefGoogle Scholar
  29. 29.
    Flowers BS, Hartman RL (2012). Challenges 3(2):194–211CrossRefGoogle Scholar
  30. 30.
    Hartman RL, Naber JR, Zaborenko N (2010). Org Process Res Dev 14(6):1347–1357CrossRefGoogle Scholar
  31. 31.
    Stubblefield CB, Bach RO (1972). J Chem Eng Data 17(4):491–492CrossRefGoogle Scholar
  32. 32.
    Wynn DA, Roth MM, Pollard BD (1984). Talanta 31(11):1036–1040CrossRefGoogle Scholar
  33. 33.
    Jennifer J (2010) PhD thesis, Universite Francois-Rabelais de ToursGoogle Scholar
  34. 34.
    Jensen KF (2017). AICHE J 63(3):858–869CrossRefGoogle Scholar
  35. 35.
    Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013). Org Process Res Dev 17:1472–1478CrossRefGoogle Scholar
  36. 36.
    Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005). Chem Eng Technol 28(3):318–323CrossRefGoogle Scholar
  37. 37.
    Roberge DM, Zimmermann B, Rainone F, Gottsponer M, Eyholzer M, Kockmann N (2008). Org Process Res Dev 12:905–910CrossRefGoogle Scholar
  38. 38.
    Krtschila U, Hessel V, Kralischd D, Kreiseld G, Küpperb M, Schenkb R (2006). Chimia 60:611–617CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2019

Authors and Affiliations

  1. 1.Process Technology & Scouting, Engineering and TechnologyBayer (China) Ltd.ShanghaiChina
  2. 2.Division of Process Technology Development, Engineering and TechnologyBayer GmbHLeverkusenGermany

Personalised recommendations