Advertisement

Journal of Flow Chemistry

, Volume 8, Issue 3–4, pp 117–121 | Cite as

A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling

  • Amine Bourouina
  • Valérie MeilleEmail author
  • Claude de BellefonEmail author
Communications
  • 30 Downloads

Abstract

The homogeneous vs heterogeneous contributions when using solid catalysts for the Suzuki-Miyaura coupling is still disputed. Leaching is often observed and quantified albeit with unclear conclusions about contributions of the leached species and of the solid catalyst to the global catalytic activity. In this work, a new flow reactor design to discriminate both contributions is proposed. With the help of a simple reactor model, it has been possible to conclude that the coupling of 4-iodoacetophenone with phenylboronic acid proceeded with the leached homogeneous species only, whatever the solid Pd/silica used, whereas chloro-derivatives behaves differently. This reactor is simple to build and could be of general use to reveal actual heterogeneous vs homogeneous catalysis for many reactions.

Keywords

Suzuki-Miyaura Heterogeneous Leaching Palladium 

Notes

Acknowledgements

ED Chimie de Lyon is gratefully acknowledged for funding the PhD thesis of A. Bourouina. CNRS, CPE Lyon and UCBL are also thanked for financial support.

Supplementary material

41981_2018_20_MOESM1_ESM.pdf (639 kb)
(PDF 639 KB)

References

  1. 1.
    Widegren JA, Finke RG (2003) J Mol Catal 191:187CrossRefGoogle Scholar
  2. 2.
    Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348(6):609CrossRefGoogle Scholar
  3. 3.
    Reay AJ, Fairlamb IJS (2015) Chem Commun 51(91):16289CrossRefGoogle Scholar
  4. 4.
    Zotto AD, Zuccaccia D (2017) Catal Sci Technol 7(18):3934CrossRefGoogle Scholar
  5. 5.
    Cantillo D, Kappe CO (2014) ChemCatChem 6(12):3286CrossRefGoogle Scholar
  6. 6.
    Len C, Bruniaux S, Delbecq F, Parmar VS (2017) Catalysts 7(5):146CrossRefGoogle Scholar
  7. 7.
    Lim J, Seong Lee S, Ying JY (2010) Chem Commun 46(5):806CrossRefGoogle Scholar
  8. 8.
    Cheong JL, Wong D, Lee S, Lim J, Lee SS (2015) Chem Commun 51:1042CrossRefGoogle Scholar
  9. 9.
    Kluwer AM, Simons C, Knijnenburg Q, van der Vlugt JI, de Bruin B, Reek JNH (2013) Dalton Trans 42(10):3609CrossRefGoogle Scholar
  10. 10.
    Schmidt AF, Kurokhtina AA (2012) Kinet Catal 53(6):714CrossRefGoogle Scholar
  11. 11.
    Soomro SS, Ansari FL, Chatziapostolou K, Köhler K (2010) J Catal 273(2):138CrossRefGoogle Scholar
  12. 12.
    Broadwater SJ, McQuade DT (2006) J Org Chem 71(5):2131CrossRefGoogle Scholar
  13. 13.
    Lee JY, Tzeng RJ, Wang MC, Lee HM (2017) Inorg Chim Acta 464:74CrossRefGoogle Scholar
  14. 14.
    Gaikwad AV, Holuigue A, Thathagar MB, ten Elshof JE, Rothenberg G (2007) Chem –Eur J 13 (24):6908CrossRefGoogle Scholar
  15. 15.
    Ellis PJ, Fairlamb IJS, Hackett SFJ, Wilson K, Lee AF (2010) Angew Chem Int Ed 49(10):1820CrossRefGoogle Scholar
  16. 16.
    Davis JJ, Hanyu Y (2010) Nanotechnology 21(26):265302CrossRefGoogle Scholar
  17. 17.
    Pérez-Lorenzo M (2012) J Phys Chem Lett 3(2):167CrossRefGoogle Scholar
  18. 18.
    Barreiro EM, Hao Z, Adrio LA, van Ommen JR, Hellgardt K, Hii KKM (2018) Catal Today 308:64CrossRefGoogle Scholar
  19. 19.
    Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  20. 20.
    de Bellefon C (2014) Catalytic engineering aspects of flow chemistry. In: Darvas F, Dormán G, Hessel V (eds) Flow chemistry vol 2: applications. Walter De Gruyter GmbH, Berlin, pp 31–61Google Scholar
  21. 21.
    Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA (2016) J Med Chem 59(9):4385CrossRefGoogle Scholar
  22. 22.
    Baleizão C, Corma A, García H, Leyva A (2003) Chem Commun 0(5):606CrossRefGoogle Scholar
  23. 23.
    Artok L, Bulut H (2004) Tetrahedron Lett 45(20):3881CrossRefGoogle Scholar
  24. 24.
    Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) Angew Chem Int Ed 49(24):4054CrossRefGoogle Scholar
  25. 25.
    Islam SM, Mondal P, Roy AS, Mondal S, Hossain D (2010) Tetrahedron Lett 51(15):2067CrossRefGoogle Scholar
  26. 26.
    Siga F, Temel H, Aydemir M, Ocak YS, Pasa S, Baysal A (2012) Appl Catal A 449:172CrossRefGoogle Scholar
  27. 27.
    Yamada YMA, Sarkar SM, Uozumi Y (2012) J Am Chem Soc 134(6):3190CrossRefGoogle Scholar
  28. 28.
    Corma A, Das D, García H, Leyva A (2005) J Catal 229(2):322CrossRefGoogle Scholar
  29. 29.
    Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549(Supplement C):60CrossRefGoogle Scholar
  30. 30.
    Pandarus V, Desplantier-Giscard D, Gingras G, Ciriminna R, Demma Carà P, Béland F, Pagliaro M (2013) Tetrahedron Lett 54(35):4712CrossRefGoogle Scholar
  31. 31.
    Pagliaro M, Pandarus V, Beland F, Ciriminna R, Palmisano G, Cara PD (2011) Catal Sci Technol 1:736CrossRefGoogle Scholar
  32. 32.
    Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD (2005) J Org Chem 70(1):161CrossRefGoogle Scholar
  33. 33.
    Handa S, Smith JD, Hageman MS, Gonzalez M, Lipshutz BH (2016) ACS Catal 6(12):8179CrossRefGoogle Scholar
  34. 34.
    Pandarus V, Gingras G, Béland F, Ciriminna R, Pagliaro M (2012) Org Process Res Dev 16 (1):117CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.Laboratoire de Génie des Procédés Catalytiques (UMR 5285 CNRS-Université Lyon 1-CPE Lyon), Institut de Chimie de Lyon,Université de LyonLyonFrance

Personalised recommendations