A New Solution for Optimal Control of Fractional Convection–Reaction–Diffusion Equation Using Rational Barycentric Interpolation
Original Paper
First Online:
- 9 Downloads
Abstract
This paper solves an optimal control problem governed by a fractional convection–reaction–diffusion partial differential equation. Using Lagrangian multipliers, necessary conditions are obtained, and then, Barycentric collocation method are applied for discretizing classical derivatives and Grünwald–Letnikov formula for fractional derivative. Barycentric interpolation is a class of Lagrange polynomial interpolation that is fast and deserves to be known as a method of polynomial interpolation and Grünwald–Letnikov formula is a basic extension of the derivative in fractional calculus. Numerical examples are presented to show the effectiveness of the method.
Keywords
Optimal control Partial differential equation Convection–reaction fractional equation Grünwald–Letnikov formula Barycentric collocation methodMathematics Subject Classification
43A62 42C15Notes
References
- 1.Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)MathSciNetCrossRefGoogle Scholar
- 2.Antil, H., Otarola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015)MathSciNetCrossRefGoogle Scholar
- 3.Antil, H., Otárola, E., Salgado, A.J.: A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control Optim. 54(3), 1295–1328 (2016)MathSciNetCrossRefGoogle Scholar
- 4.Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)MathSciNetCrossRefGoogle Scholar
- 5.Betts, J.T., Kolmanovsky, I.: Practical methods for optimal control using nonlinear programming. Appl. Mech. Rev. 55, B68 (2002)CrossRefGoogle Scholar
- 6.Biegler, L.T., Ghattas, O., Heinkenschloss, M., van Bloemen Waanders, B.: Large-scale PDE-constrained optimization: an introduction. In: Large-Scale PDE-Constrained Optimization (pp. 3–13). Springer, Berlin (2003)CrossRefGoogle Scholar
- 7.Bhrawy, A.H.: A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion. Proc. Rom. Acad. Ser. A 17(1), 39–47 (2016)MathSciNetGoogle Scholar
- 8.Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer. Algorithms 71(1), 151–180 (2016)MathSciNetCrossRefGoogle Scholar
- 9.Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84(295), 2083–2110 (2015)MathSciNetCrossRefGoogle Scholar
- 10.Borzì, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–395 (2009)MathSciNetCrossRefGoogle Scholar
- 11.Briggs, W.L., McCormick, S.F.: A Multigrid Tutorial, vol. 72. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
- 12.Darehmiraki, M., Farahi, M.H., Effati, S.: A novel method to solve a class of distributed optimal control problems using Bezier curves. J. Comput. Nonlinear Dyn. 11(6), 061008 (2016)CrossRefGoogle Scholar
- 13.Darehmiraki, M., Farahi, M.H., Effati, S.: Solution for fractional distributed optimal control problem by hybrid meshless method. J. Vib. Control 24(11), 2149–2164 (2018)MathSciNetCrossRefGoogle Scholar
- 14.Fix, G.J., Hackbusch, W.: Elliptic differential equations (theory and numerical treatment). Bull. Am. Math. Soc. 32(4), 458 (1995)MathSciNetCrossRefGoogle Scholar
- 15.Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)MathSciNetCrossRefGoogle Scholar
- 16.Gunzburger, M.D.: Perspectives in Flow Control and Optimization, vol. 5. SIAM, Philadelphia (2003)zbMATHGoogle Scholar
- 17.Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer Science and Business Media, Berlin (2013)zbMATHGoogle Scholar
- 18.Herzog, R., Kunisch, K.: Algorithms for PDE constrained optimization. GAMM-Mitteilungen 33(2), 163–176 (2010)MathSciNetCrossRefGoogle Scholar
- 19.Hinze, M., Rösch, A.: Discretization of optimal control problems. In: Constrained Optimization and Optimal Control for Partial Differential Equations (pp. 391-430). Springer, Basel (2012)zbMATHGoogle Scholar
- 20.Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, Chelmsford (2012)Google Scholar
- 21.Klein, G., Berrut, J.P.: Linear rational finite differences from derivatives of Barycentric rational interpolants. SIAM J. Numer. Anal. 50(2), 643–656 (2012)MathSciNetCrossRefGoogle Scholar
- 22.Leveque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, vol. 98. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
- 23.Martínez, A., Rodríguez, C., Vázquez-Méndez, M.E.: Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38, 1534–1553 (2000)MathSciNetCrossRefGoogle Scholar
- 24.Mohammadzadeh, E., Pariz, N., Hosseini Sani, S.K., Jajarmi, A.: An efficient numerical method for the optimal control of fractional-order dynamic systems. J. Vib. Control. (2018). https://doi.org/10.1177/1077546317751755 MathSciNetCrossRefGoogle Scholar
- 25.Mustapha, K., McLean, W.: Super convergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)MathSciNetCrossRefGoogle Scholar
- 26.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetCrossRefGoogle Scholar
- 27.Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)MathSciNetCrossRefGoogle Scholar
- 28.Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)Google Scholar
- 29.Otarola, E.: A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM Math. Model. Numer. Anal. 51(4), 1473–1500 (2017)MathSciNetzbMATHGoogle Scholar
- 30.Otárola, E.: A PDE approach to numerical fractional diffusion (Doctoral dissertation). University of Maryland, College Park (2014)Google Scholar
- 31.Rezazadeh, A., Mahmoudi, M., Darehmiraki, M.: Space-time spectral collocation method for one-dimensional PDE constrained optimisation. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1501161 CrossRefGoogle Scholar
- 32.Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia (2003)CrossRefGoogle Scholar
- 33.Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62(3), 902–917 (2011)MathSciNetCrossRefGoogle Scholar
- 34.Steeb, W.H., Shi, T.K.: Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific, Singapore (1997)CrossRefGoogle Scholar
- 35.Steeb, W.H., Hardy, Y.: Problems and Solutions in Introductory and Advanced Matrix Calculus. World Scientific, Singapore (2016)CrossRefGoogle Scholar
- 36.Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, vol. 88. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
- 37.Taylor, W.J.: Method of Lagrangian curvilinear interpolation. J. Res. Natl. Bureau Stand. 35(2), 151–155 (1945)MathSciNetCrossRefGoogle Scholar
- 38.Van Loan, C.F., Golub, G.H.: Matrix Computations, p. 3. Johns Hopkins University Press, Baltimore (1983)zbMATHGoogle Scholar
- 39.Ye, X., Xu, C.: A spectral method for optimal control problems governed by the time fractional diffusion equation with control constraints. In: Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, pp. 403–414. Springer, Cham (2014)Google Scholar
- 40.Yi, S.C., Yao, L.Q.: A steady Barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis. Numer. Methods Partial Differ. Equ. (2019). https://doi.org/10.1002/num.22371 MathSciNetCrossRefzbMATHGoogle Scholar
- 41.Zhou, Z., Yu, X., Yan, N.: Local discontinuous galerkin approximation of convection-dominated diffusion optimal control problems with control constraints. Numer. Methods Partial Differ. Equ. 30(1), 339–360 (2014)MathSciNetCrossRefGoogle Scholar
- 42.Zhu, J., Zeng, Q.C.: A mathematical formulation for optimal control of air pollution. Sci. China D 46, 994–1002 (2003)CrossRefGoogle Scholar
- 43.Zuppa, C.: Error estimates for moving least square approximations. Bull. Braz. Math. Soc. 34(2), 231–249 (2003)MathSciNetCrossRefGoogle Scholar
Copyright information
© Iranian Mathematical Society 2019