# An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems

• Omid Solaymani Fard
Original Paper

## Abstract

This paper presents a novel numerical strategy based on combination of an adaptive semismooth Newton (ASN) method and the Lavrentiev regularization technique for the solution of elliptic optimal control problems with state constraints. Using the global convergence proof for a nonmonotone semismooth Newton method, we will exploit an adaptive nonmonotone line search method such that the nonmonotonicity degree of this method can be increased when the results are far from the optimum solution and it can be reduced when they are close to the optimizer. In this strategy, the role of the Lavrentiev regularization technique is converting the original optimal control problem to a regularized optimal control problem. Using the finite difference discretization scheme and a Newton–Cotes rule, the regularized optimal control problem is converted to a bound constrained optimization problem (BCOP). Then the ASN method is implemented to solve the resulting BCOP. Numerical results show the efficiency of the proposed procedure.

## Keywords

Optimal control Nonmonotone semismooth Newton method State constraints Finite difference discretization scheme

## Mathematics Subject Classification

49K20 65N06 90C30

## References

1. 1.
Ahookhosh, M., Ghaderi, S.: On efficiency of nonmonotone Armijo-type line searches. Appl. Math. Model. 43, 170–190 (2017)
2. 2.
Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algorithms 66, 49–78 (2014)
3. 3.
Anita, S., Arnautu, V., Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2011)
4. 4.
Arqub, O.A.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016a)
5. 5.
Arqub, O.A.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inform. 146, 231–254 (2016b)
6. 6.
Arqub, O.A., Shawagfeh, N.: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis. Math. Methods Appl Sci. (2019).
7. 7.
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (2006)
8. 8.
Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)
9. 9.
Bonettini, S.: A nonmonotone inexact Newton method. Optim. Methods Softw. 20, 475–491 (2005)
10. 10.
Borzì, A.: Smoothers for control- and state-constrained optimal control problems. Comput. Vis. Sci. 11, 59–66 (2008)
11. 11.
Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. Computational Science and Engineering. SIAM, Philadelphia (2012)
12. 12.
Cantrell, S., Cosner, C., Ruan, S.: Spatial Ecology, CRC Mathematical and Computational Biology. CRC Press, Boca Raton (2009)
13. 13.
Capasso, V., Burkard, R., Deuflhard, P., Engl, H.W., Jameson, A., Periaux, J., Lions, J.L., Strang, G.: Computational Mathematics Driven by Industrial Problems. Lecture Notes in Mathematics. Springer, Berlin (2000)Google Scholar
14. 14.
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)
15. 15.
Cherednichenko, S., Rösch, A.: Error estimates for the regularization of optimal control problems with pointwise control and state constraints. J. Anal. Appl. 27, 195–212 (2008)
16. 16.
Chi, X., Wei, H., Wan, Z., Zhu, Z.: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math. Sci. 37, 1262–1280 (2017)
17. 17.
Christofides, P., Armaou, A., Lou, Y., Varshney, A.: Control and Optimization of Multiscale Process Systems, Control Engineering. Birkhäuser, Boston (2008)
18. 18.
Diehl, M., Glineur, F., Jarlebring, E., Michiels, W.: Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin (2010)
19. 19.
Fard, O.S., Borzabadi, A.H., Sarani, F.: An adaptive semismooth Newton method for approximately solving control-constrained elliptic optimal control problems. Trans. Inst. Meas. Control 41, 3010–3020 (2019)
20. 20.
Field, D.A., Komkov, V.: Theoretical aspects of industrial design. In: Proceedings in Applied Mathematics Series. SIAM (1992)Google Scholar
21. 21.
Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2009)
22. 22.
Hinze, M., Pinnau, R., Ulbrich, R., Ulbrich, S.: Optimization with PDE Constraints. Springer, Berlin (2008)
23. 23.
Hu, W.W.: Approximation and control of the Boussinesq equations with application to control of energy efficient building systems. Ph.D. thesis, Department of Mathematics, Virginia Tech (2012)Google Scholar
24. 24.
Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2008)
25. 25.
Kimiaei, M., Rahpeymaii, F.: A new nonmonotone linesearch trust-region approach for nonlinear systems. TOP 27, 199–232 (2019)
26. 26.
Kimiaei, M.: A new class of nonmonotone adaptive trust region methods for nonlinear equations with box constraints. Calcolo 54, 769–812 (2017)
27. 27.
Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49, 830–858 (2011)
28. 28.
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)
29. 29.
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, New York (2008)
30. 30.
Manchanda, P., Lozi, R., Siddiqi, A.H.: Industrial Mathematics and Complex Systems: Emerging Mathematical Models. Methods and Algorithms, Industrial and Applied Mathematics. Springer, Singapore (2017)
31. 31.
Meyer, C., Philip, P., Tröltzsch, F.: Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45, 699–721 (2006)
32. 32.
Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 209–228 (2006)
33. 33.
Meyer, C., Tröltzsch, F.: On an elliptic optimal control problem with pointwise mixed control-state constraints, recent advances in optimization. Lect. Notes Econ. Math. Syst. 563, 187–204 (2006)
34. 34.
Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)Google Scholar
35. 35.
Nosratipour, H., Borzabadi, A.H., Fard, O.S.: Optimal control of viscous Burgers equation via an adaptive nonmonotone Barzilai-Borwein gradient method. Int. J. Comput. Math. (2017).
36. 36.
Nosratipour, H., Borzabadi, A.H., Fard, O.S.: On the nonmonotonicity degree of nonmonotone line searches. Calcolo 54, 1217–1242 (2017b)
37. 37.
Nosratipour, H., Fard, O.S., Borzabadi, A.H.: An adaptive nonmonotone global Barzilai–Borwein gradient method for unconstrained optimization. Optimization 66, 641–655 (2017c)
38. 38.
Nosratipour, H., Fard, O.S., Borzabadi, A.H., Sarani, F.: Stable equilibrium configuration of two bar truss by an efficient nonmonotone global Barzilai–Borwein gradient method in a fuzzy environment. Afrika Matematika 28, 333–356 (2017d)
39. 39.
Pang, J.S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
40. 40.
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
41. 41.
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
42. 42.
Shen, C., Leyffer, S., Fletcher, R.: A nonmonotone filter method for nonlinear optimization. Comput. Optim. Appl. 52, 583–607 (2012)
43. 43.
Su, K., Pu, D.: A nonmonotone filter trust region method for nonlinear constrained optimization. J. Comput. Appl. Math. 223, 230–239 (2009)
44. 44.
Su, K., Yu, Z.: A modified SQP method with nonmonotone technique and its global convergence. Comput. Math. Appl. 57, 240–247 (2009)
45. 45.
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics. American Mathematical Society, Providence (2010)
46. 46.
Ulbrich, M., Ulbrich, S.: Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function. Math. Program. 95(2003), 103–135 (2003)
47. 47.
Vallejos, M.: Multigrid methods for elliptic optimal control problems with pointwise state constraints. Numer. Math. Theory Methods Appl. 5, 99–109 (2012)
48. 48.
Vallejos, M.: A comparison of smoothers for state-constrained optimal control problems. Philipp. Sci. Lett. 7, 13–21 (2014)Google Scholar
49. 49.
Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

## Authors and Affiliations

• Omid Solaymani Fard
• 1