Convolution Type \(\hbox {C}^*\)-Algebras

  • Kourosh NourouziEmail author
  • Ali Reza
Original Paper


In this paper, by using the notion of convolution types we introduce symmetric and non-symmetric convolution type \(\hbox {C}^*\)-algebras. It is shown that any (exact) convolution type induces a (an exact) functor on the category of \(\hbox {C}^*\)-algebras. In particular, any group induces a convolution type and a functor on the category of \(\hbox {C}^*\)-algebras. It is also shown that discrete crossed product of \(\hbox {C}^*\)-algebras and discrete inverse semigroup \(\hbox {C}^*\)-algebras can be considered as convolution type \(\hbox {C}^*\)-algebras.


Convolution type Convolution type \(\hbox {C}^*\)-algebra \(\hbox {C}^*\)-envelope 

Mathematics Subject Classification

46L05 46M15 



The authors would like to thank the anonymous referee for his/her constructive and valuable comments which helped improve the quality of the paper.


  1. 1.
    Araùjo, J., Bünau, P.V., Mitchell, J.D., Neunhöffer, M.: Computing automorphisms of semigroups. J. Symb. Comput. 45(3), 373–392 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brunotte, H.: Discrete convolution rings. Rom. J. Math. Comput. Sci. 3(2), 155–159 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Carando, D., Sevilla-Peris, P.: On the convergence of some classes of Dirichlet series. Proceedings of the XIIth “Dr. Antonio A. R. Monteiro” Congress, 57–66, Actas Congr. “Dr. Antonio A. R. Monteiro”, Univ. Nac. del Sur, Bahía Blanca (2014)Google Scholar
  4. 4.
    D’Ambrosio, L.: Extension of Bernstein polynomials to infinite dimensional case. J. Approx. Theory 140(2), 191–202 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Davidson, K.: \(\text{ C }^*\)-algebras by Example. Fields Institute Monographs, vol. 6. American Mathematical Society, Providence (1996)Google Scholar
  6. 6.
    East, J., Nordahi, T.: On groups generated by involutions of a semigroup. J. Algebra 445, 136–162 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    El Bachraoui, M.: Convolution over Lie and Jordan algebras. Contrib. Discrete Math. 1(1), 106–126 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Khoshkam, M., Skandalis, G.: Crossed products of \(C^*\)-algebras by groupoids and inverse semigroups. J. Oper. Theory 51(2), 255–279 (2004)Google Scholar
  9. 9.
    Murphy, G.J.: \(\text{ C }^\ast \)-algebras and operator theory. Academic Press Inc, Boston (1990)Google Scholar
  10. 10.
    Nourouzi, K., Reza, A.: Functors induced by Cauchy extensions of \(\text{ C }^\ast \)-algebras. Sahand Commun. Math Anal. 14(1), 27–53 (2019)Google Scholar
  11. 11.
    Pedersen, G.K.: \(\text{ C }^\ast \)-algebras and their Automorphism Groups, London Mathematical Society Monographs, vol. 14. Academic Press Inc [Harcourt Brace Jovanovich, Publishers], London (1979)Google Scholar
  12. 12.
    Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rotman, J.J.: An introduction to homological algebra. Universitext, 2nd edn. Springer, New York (2009)zbMATHGoogle Scholar
  14. 14.
    Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991)Google Scholar
  15. 15.
    Veldsman, S.: Convolution rings. Algebra Colloq. 13(2), 211–238 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Veldsman, S.: Arithmetic convolution rings. Int. J. Algebra 5(13–16), 771–791 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Williams, D.P.: Crossed Products of \(\text{ C }^\ast \)-algebras. Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)Google Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Faculty of MathematicsK. N. Toosi University of TechnologyTehranIran

Personalised recommendations