On Topological Spaces Defined by \({\mathcal {I}}\)-Convergence

  • Xiangeng Zhou
  • Li Liu
  • Shou LinEmail author
Original Paper


Ideal convergence in a topological space is induced by changing the definition of the convergence of sequences on the space by an ideal. Let \({\mathcal {I}}\subseteq 2^{\mathbb {N}}\) be an ideal. A sequence \((x_{n}:n\in {\mathbb {N}})\) in a topological space X is said to be \(\mathcal I\)-convergent to a point \(x\in X\) provided for any neighborhood U of x in X, we have the set \(\{n\)\(\in {\mathbb {N}}:x_{n}\notin U \}\in {\mathcal {I}}\). Recently, \({\mathcal {I}}\)-sequential spaces and \({\mathcal {I}}\)-Fréchet-Urysohn spaces are introduced and studied. In this paper, we discuss some topological spaces defined by \({\mathcal {I}}\)-convergence and their mappings on these spaces, expound their operation properties on these spaces, and study the role of maximal ideals of \({\mathbb {N}}\) in \(\mathcal I\)-convergence. We can apply \({\mathcal {I}}\)-convergence to unify and simplify the proofs of some old results in the literature and obtain some new results on the usual convergence and statistical convergence of topological spaces.


Ideal convergence Statistical convergence \({\mathcal {I}}\)-sequential space \({\mathcal {I}}\)-Fréchet-Urysohn space \({\mathcal {I}}\)-continuous mapping Quotient mapping 

Mathematics Subject Classification

54A20 54B15 54C08 54D55 40A05 26A03 



The authors would like to thank the referee for the report of high quality. The report gives a series of essential comments to improve the original paper. For example, it considers the comparison of ideal convergence with respect to distinct ideals of \({\mathbb {N}}\) under the inclusion order, establishes some related results, discusses the role of maximal ideals of \({\mathbb {N}}\) in ideal convergence, introduces the class \(\Theta ({\mathcal {I}})\) and the space \(\Sigma ({\mathcal {J}})\), and brings out some questions for further study. In particular, the following results of this paper belong to the referee: Example 2.7, Definition 3.15, and Theorems 3.17 and 4.4.


  1. 1.
    Boone, J.R., Siwiec, F.: Sequentially quotient mappings. Czechoslov. Math. J. 26, 174–182 (1976)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Çakallı, H.: Sequential definitions of connectedness. Appl. Math. Lett 25, 461–465 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cheng, L.X., Lin, G.C., Lan, Y.Y., Liu, H.: Measure theory of statistical convergence. Sci. China Ser. A 51, 2285–2303 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, L.X., Lin, G.C., Shi, H.H.: On real-valued measures of statistical type and their applications to statistical convergence. Math. Comput. Model. 50, 116–122 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Connor, J., Ganichev, M., Kadets, V.: A Characterization of Banach spaces with separable duals via weak statistical convergence. J. Math. Anal. Appl. 244, 251–261 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Connor, J., Swardson, M.A.: Measures and ideals of \(C^*(X)\). Ann. N. Y. Acad. Sci. 704, 80–91 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Das, P.: Some further results on ideal convergence in topological spaces. Topol. Appl. 159, 2621–2626 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Das, P., Ghosal, S.: When \({\cal{I}}\)-Cauchy nets in complete uniform spaces are \({\cal{I}}\)-convergent. Topol. Appl. 158, 1529–1533 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Das, P., Kočinac, LjDR, Chandra, D.: Some remarks on open covers and selection principles using ideals. Topol. Appl 202, 183–193 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Das, P., Kostyrko, P., Wilezynski, W., Malik, P.: \({\cal{I}}\) and \({\cal{I}}^{\ast }\)-convergence of double sequences. Math. Slovaca 58, 605–620 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Di Maio, G., Kočinac, L.D.R.: Statistical convergence in topology. Topol. Appl. 156, 28–45 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Engelking, R.: General Topology (revised and completed edition). Heldermann Verlag, Berlin (1989)Google Scholar
  13. 13.
    Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Franklin, S.P.: Spaces in which sequences suffice. Fund. Math. 57, 107–115 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fridy, J.: On statistical convergence. Analysis 5, 301–313 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Georgiou, D.N., Iliadis, S.D., Megaritis, A.C., Prinos, G.A.: Ideal-convergence classes. Topol. Appl. 222, 217–226 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)CrossRefzbMATHGoogle Scholar
  18. 18.
    Givant, S., Halmos, P.: Introduction to Boolean Algebras, Undergraduate Texts in Mathematics. Springer, New York (2009)zbMATHGoogle Scholar
  19. 19.
    Gruenhage, G.: Generalized metric spaces. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-theoretic Topology, pp. 423–501. Amsterdam, North-Holland (1984)CrossRefGoogle Scholar
  20. 20.
    Gruenhage, G., Tanaka, Y.: Products of \(k\)-spaces and spaces of countable tightness. Trans. Am. Math. Soc. 273, 299–308 (1982)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jasinski, J., Reclaw, I.: Ideal convergence of continuous functions. Topol. Appl. 153, 3511–3518 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: \({\cal{I}}\)-convergence and extremal \({\cal{I}}\)-limit points. Math. Slovaca 55, 443–464 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kostyrko, P., Šalát, T., Wilczynski, W.: \({\cal{I}}\)-convergence, Real Anal. Exch. 26(2000/2001) 669-686Google Scholar
  24. 24.
    Lahiri, B.K., Das, P.: \({\cal{I}}\) and \({\cal{I}}^{\ast }\)-convergence in topological spaces. Math. Bohem. 130(2), 153–160 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Li, K., Lin, S., Ge, Y.: On statistical convergnece on cone metric spaces. Topol. Appl. 196, 641–651 (2015)CrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, L., Tang, Z., Lin, S.: Statistically sequential spaces and statistically sequentially quotient mappings. Appl. Math. J. Chin. Univ. 30(4), 485–493 (2015). (in Chinese)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lin, S., Yun, Z.Q.: Generalized Metric Spaces and Mapping. Atlantis Studies in Mathematics, vol. 6. Atlantis Press, Paris (2016)CrossRefGoogle Scholar
  28. 28.
    Michael, A.E.: A quintuple quotient quest. Gen. Topol. Appl. 2, 91–138 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Öztürk, F., Şençimen, C., Pehlivan, S.: Strong \(\Gamma \)-ideal convergence in a probabilistic normed space. Topol. Appl. 201, 171–180 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pal, S.K.: \({\cal{I}}\)-sequential topological spaces. Appl. Math. E Not. 14, 236–241 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Renukadevi, V., Prakash, B.: \({\cal{I}}\)-Fréchet-Uryshon spaces. Math. Morav. 20(2), 87–97 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)CrossRefGoogle Scholar
  33. 33.
    Tang, Z., Lin, F.: Statistical versions of sequential and Fréchet-Urysohn spaces. Adv. Math. (China) 44, 945–954 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Zhou, X.G., Zhang, M.: More about the kernel convergence and the ideal convergence. Acta Math. Sin. Engl. Ser. 29, 2367–2372 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Department of MathematicsNingde Normal UniversityNingdePeople’s Republic of China

Personalised recommendations