Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 6, pp 1725–1742 | Cite as

Numerical Method for Solving the Parametric Identification Problem for Loaded Differential Equations

  • Kamil Aida-Zade
  • Vagif AbdullayevEmail author
Original Paper
  • 33 Downloads

Abstract

In the work, we propose a method of numerical solution to coefficient inverse problems with respect to loaded differential equations with multi point and integral conditions. The method is based on the operation that convolves given integral conditions into point conditions. This method allows reducing the solution to the initial problem to a Cauchy problem with respect to systems of ordinary differential and of linear algebraic equations. The approach is extended to a class of one-dimensional inverse problems for loaded parabolic equations.

Keywords

Inverse problem Loaded differential equation Nonlocal condition 

Mathematics Subject Classification

34A55 34B10 34K28 65L09 

Notes

References

  1. 1.
    Abdullayev, V.M.: Identification of the functions of response to loading for stationary systems. Cybern. Syst. Anal. 53(3), 417–425 (2017)CrossRefGoogle Scholar
  2. 2.
    Abdullaev, V.M., Aida-zade, K.R.: Numerical method of solution to loaded nonlocal boundary-value problems for ordinary differential equations. Comput. Math. Math. Phys. 54(7), 1096–1109 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Abdullayev, V.M., Aida-zade, K.R.: Optimization of loading places and load response functions for stationary systems. Comput. Math. Math. Phys. 57(4), 634–644 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aida-zade, K.R., Abdullayev, V.M.: Solution to a class of inverse problems for a system of loaded ordinary differential equations with integral conditions. J. Inverse Ill Posed Probl. 24(5), 543–558 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abdullaev, V.M., Aida-zade, K.R.: On numerical solution to systems of loaded ordinary differential equations. Comput. Math. Math. Phys. 44(9), 1585–1595 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aida-zade, K.R., Abdullaev, V.M.: On the solution of boundary-value problems with nonseparated multipoint and integral conditions. Differ. Equ. 49(9), 1114–1125 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, Berlin (1994)CrossRefGoogle Scholar
  8. 8.
    Belov, Y.Y.: Inverse problems for parabolic equations. J. Inverse Ill Posed Probl. 1(4), 283–305 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Borovykh, N.: Stability in the numerical solution of the heat equation with nonlocal boundary conditions. Appl. Numer. Math. 42, 17–27 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cannon, J.R., Duchateau, P.: Structural identification of an unknown source term in a heat equation. Inverse Probl. 14, 535–551 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dzhenaliev, M.T.: On the boundary value problems for loaded differential equations. J. Korean Math. Soc. Seoul 37(5), 10311042 (2000)MathSciNetGoogle Scholar
  12. 12.
    Farcas, A., Lesnic, D.: The boundary-element method for the determination of a heat source dependent on one variable. J. Eng. Math. 54, 375–388 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dinh, N.H., Pham, X.T., Lesnic, D., Ivanchov, M.: Determination of a source in the heat equation from integral observations. J. Comput. Appl. Math. 264, 82–98 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hasanov, A.: Identification of spacewise and time dependent source terms in 1D heat conduction equation from temperature measurement at a final time. Int. J. Heat Mass Transf. 55, 2069–2080 (2012)CrossRefGoogle Scholar
  15. 15.
    Hasanov, A., Otelbaev, M., Akpayev, B.: Inverse heat conduction problems with boundary and final time measured output data. Inverse Probl. Sci. Eng. 19, 895–1006 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ismailov, M.I., Kanca, F., Lesnic, D.: Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions. Appl. Math. Comput. 218, 4138–4146 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ivanchov, M.I.: Inverse problems for the heat-conduction equation with nonlocal boundary conditions. Ukr. Math. J. 45(8), 1186–1192 (1993)CrossRefGoogle Scholar
  18. 18.
    Johansson, T., Lesnic, D.: Determination of a spacewise dependent heat source. J. Comput. Appl. Math. 209, 66–80 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kabanikhin, S.I.: Inverse and Ill-Posed Problems: Theory and Applications. De Gruyter, Germany (2011)CrossRefGoogle Scholar
  20. 20.
    Kozhanov, A.I.: Nonlinear loaded equations and inverse problems. Comput. Math. Math. Phys. 44(4), 694–716 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kunze, H., Vrscay, E.R.: Solving inverse problems for ordinary differential equations using the Picard contraction mapping. Inverse Probl. 15, 745–770 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, Y.: Numerical solution of the heat equation with nonlocal boundary conditions. J. Comput. Appl. Math. 110, 115–127 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ling, L., Yamamoto, M., Hon, Y.C.: Identification of source locations in two-dimensional heat equations. Inverse Probl. 22, 1289–1305 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, C.S.: A Lie-group shooting method for reconstructing a past time-dependent heat source. Int. J. Heat Mass Transf. 55, 1773–1781 (2012)CrossRefGoogle Scholar
  25. 25.
    Nakhusheva, V.A.: Differential Equations of Mathematical Models of Non-local Processes. Nauka, Moscow (2006)zbMATHGoogle Scholar
  26. 26.
    Pulkina, L.S.: A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels. Russ. Math. 10, 32–44 (2012)Google Scholar
  27. 27.
    Pulkina, L.S.: Nonlocal problems for hyperbolic equations with degenerate integral conditions. EJDE 193, 1–12 (2016)zbMATHGoogle Scholar
  28. 28.
    Pulkina, L.S.: Solution to nonlocal problems of pseudohyperbolic equations. EJDE 116, 1–9 (2014)zbMATHGoogle Scholar
  29. 29.
    Pulkina, L.S.: A nonlocal problem with integral conditions for a hyperbolic equation. Differ. Equ. 40(7), 947–953 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rothe, E.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Math. Ann. 102(1), 650–670 (1930)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Vasil’ev, O.V., Terleckij, V.A.: Optimal control of a boundary problem. Proc. Steklov Inst. Math. 211, 121–130 (1995)MathSciNetGoogle Scholar
  32. 32.
    Yakovlev, M.N.: Estimates of the solutions systems of integro-differential equations subject to many-points and integral boundary conditions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). 124, 131–139 (1983)Google Scholar
  33. 33.
    Yan, L., Fu, C.L., Yang, F.L.: The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 32, 216–222 (2008)CrossRefGoogle Scholar
  34. 34.
    Yang, L., Deng, Z.-C., Yu, J.-N., Luo, G.-W.: Optimization method for the inverse problem of reconstructing the source term in a parabolic equation. Math. Comput. Simul. 80, 314–326 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yang, F., Guo, H.Z., Li, X.X.: The method of central difference for the inverse time-dependent heat source problem. Appl. Math. Comput. 218, 3025–3034 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Institute of Control Systems of ANASBakuAzerbaijan
  2. 2.Institute of Mathematics and Mechanics of ANASBakuAzerbaijan
  3. 3.Azerbaijan State Oil and Industry UniversityBakuAzerbaijan

Personalised recommendations