Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 6, pp 1697–1712 | Cite as

Inverse Eigenvalue Problem for Quasi-tridiagonal Matrices

  • Xing Tao WangEmail author
  • Mei Ling Jin
Original Paper


The inverse eigenvalue problem of quasi-tridiagonal matrices involves reconstruction of quasi-tridiagonal matrices with the given eigenvalues satisfying some properties. In particular, we first analyze the eigenvalue properties from two aspects. On this basis, we investigate the inverse eigenvalue problem of quasi-tridiagonal matrices from the theoretic issue on solvability and the practical issue on computability. Sufficient conditions of existence of solutions of the inverse eigenvalue problem of quasi-tridiagonal matrices concerning solvability are found, and algorithms concerning computability are given with the unitary matrix tool from which we construct matrices. Finally, examples are presented to illustrate the algorithms.


Quasi-tridiagonal matrix Eigenvalue Inverse eigenvalue problem 

Mathematics Subject Classification

65F15 15A18 



The research was supported partially by National Natural Science Foundation of China (Grant nos. 10871056 and 10971150).


  1. 1.
    Andrea, S.A., Berry, T.G.: Continued fractions and periodic Jacobi matrices. Linear Algebra Appl. 161, 117–134 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arlinskii, Y., Tsekhanovskii, E.I.: Non-self-adjoint Jacobi matrices with a rank-one imaginary part. J. Funct. Anal. 241, 383–438 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bebiano, N., Joao, D.P.: Inverse spectral problems for structured pseudo-symmetric matrices. Linear Algebra Appl. 438, 4062–4074 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bebiano, N., Tyaglov, M.: Direct and inverse spectral problems for a class of non-self-adjoint periodic tridiagonal matrices. Linear Algebra Appl. 439, 3490–3504 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beckerman, B.: Complex Jacobi matrices. J. Comput. Appl. Math. 127, 17–65 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boley, D., Golub, G.H.: A modified method for reconstructing periodic Jacobi matrices. Math. Comput. 165, 143–150 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ferguson, W.E.: The construction of Jacobi and periodic Jacobi matrices with prescribed spectra. Math. Comput. 35, 1203–1220 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gladwell, G.M.L.: Inverse problems in vibration. Appl. Mech. Rev. 39, 1013–1018 (1986)CrossRefGoogle Scholar
  9. 9.
    Hald, O.: Inverse eigenvalue problems for Jacobi matrices. Linear Algebra Appl. 14, 63–85 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Higgins, V., Johnson, C.: Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices. Linear Algebra Appl. 489, 104–122 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hochstadt, H.: On the construction of a Jacobi matrix from spectral data. Linear Algebra Appl. 8, 435–446 (1974)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Moerbeke, P.V.: The spectrum of Jacobi matrices. Inventiones Mathematicae 37, 45–81 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Monfared, K.H., Shader, B.L.: The \(\lambda -\tau \) structured inverse eigenvalue problem. Linear Multilinear Algebra 63, 2275–2300 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mourad, B., Abbas, H., Moslehian, M.S.: A note on the inverse spectral problem for symmetric doubly stochastic matrices. Linear Multilinear Algebra 63, 2537–2545 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Natalia, B., da Fonseca, C.M., da Providencia, J.: An inverse eigenvalue problem for periodic Jacobi matrices in Minkowski spaces. Linear Algebra Appl. 435, 2033–2045 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Soto, R.L., Julio, A.I., Salas, M.: Nonnegative persymmetric matrices with prescribed elementary divisors. Linear Algebra Appl. 483, 139–157 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Su, Q.F.: Inverse spectral problem for pseudo-Jacobi matrices with partial spectral data. J. Comput. Appl. Math. 297, 1–12 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xu, Y.H., Jiang, E.X.: An inverse eigenvalue problem for periodic Jacobi matrices. Inverse Probl. 23, 165–181 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, Q.H., Xu, C.Q., Yang, S.J.: Symmetric stochastic inverse eigenvalue problem. J. Inequal. Appl. 180, 1–17 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations