Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 6, pp 1605–1618 | Cite as

Chain Mixing, Shadowing Properties and Multi-transitivity

  • Huoyun Wang
  • Heman FuEmail author
  • Sulan Diao
  • Peng Zeng
Original Paper
  • 82 Downloads

Abstract

We prove that a map f is chain mixing if and only if \(f^r\times f^s\) is chain transitive for some positive integers rs. We prove that a map which has the average shadowing property with dense \(\underline{0}\)-recurrent points is transitive, and by this result we point out that a map is multi-transitive if it has the average shadowing property and an invariant Borel probability measure with full support. Moreover, we show that \(\Delta \)-mixing, the completely uniform positive entropy and the average shadowing property are equivalent mutually for a surjective map which has the shadowing property.

Keywords

Shadowing property Average shadowing Multi-transitivity Completely uniform positive entropy Chain mixing 

Mathematics Subject Classification

37B05 34D05 

Notes

Acknowledgements

This research was supported by National Nature Science Funds of China (Grant Nos. 11471125, 11771149). The authors would like to thank the referees for their helpful suggestions and remarks.

References

  1. 1.
    Ahmadi Dastjerdi, D., Hosseini, M.: Sub-shadowings. Nonlinear Anal. 72, 3759–3766 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akin, E.: The General Topology of Dynamical Systems. Graduate Studies in Mathematics. American Mathematics Society, Providence (1993)Google Scholar
  3. 3.
    Blanchard, F.: Fully Positive Topological Entropy and Topological Mixing. Contemporary Mathematical Symbolic Dynamics and Applications. American Mathematical Society, Providence, pp 95–105 (1992)Google Scholar
  4. 4.
    Blank, M.L.: Metric properties of \(\varepsilon \)-trajectories of dynamical systems with stochastic behaviour. Ergodic Theory Dyn. Syst. 8, 365–378 (1988)Google Scholar
  5. 5.
    Blank, M. L.: Deterministic properties of stochastically perturbed dynamical systems (Russian). Teor. Veroyatn. Primen. 33, 659–671 (1988). Translation in Theory Probab. Appl. 33, 612–623 (1988)Google Scholar
  6. 6.
    Chen, Z.J., Li, J., Lü, J.: Point transitivity, \(\Delta \)-transitivity and multi-minimality. Ergodic Theory Dyn. Syst. 35, 1423–1442 (2015)Google Scholar
  7. 7.
    Fakhari, A., Ghane, F.H.: On shadowing: ordinary and ergodic. J. Math. Anal. Appl. 364, 151–155 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glasner, E., Ye, X.D.: Local entropy theory. Ergodic Theory Dyn. Syst. 29, 321–356 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gu, R.B.: The asymptotic average shadowing property and transitivity. Nonlinear Anal. 67, 1680–1689 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huang, W., Li, S.M., Shao, S., Ye, X.D.: Null systems and sequence entropy pairs. Ergodic Theory Dyn. Syst. 23, 1505–1523 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kulczycki, M., Kwietniak, D., Oprocha, P.: On almost specification and average shadowing properties. Fund. Math. 224, 241–278 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kulczycki, M., Oprocha, P.: Properties of dynamical systems with the asymptotic average shadowing property. Fund. Math. 212, 35–52 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ku̇rka, P.: Topological and Symbolic Dynamicals. Societe Mathematique de France, Paris (2004)Google Scholar
  14. 14.
    Kerr, D., Li, H.F.: Independence in topological and \(C^{*}\)-dynamics. Math. Ann. 338, 869–926 (2007)Google Scholar
  15. 15.
    Kwietniak, D., Oprocha, P.: A note on the average shadowing property for expansive maps. Topol. Appl. 159, 19–27 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kwietniak, D., Oprocha, P.: On weak mixing, minimality and weak disjoiness of all iterates. Ergodic Theory Dyn. Syst. 32, 1661–1672 (2012)CrossRefGoogle Scholar
  17. 17.
    Moothathu, T.K.S.: Diagonal points having dense orbit. Colloq. Math. 120, 127–138 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Niu, Y.X.: The average-shadowing property and strong ergodicity. J. Math. Anal. Appl. 376, 528–534 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Oprocha, P., Dastjerdi, D.A., Hosseini, M.: On partial shadowing of complete pseudo-orbits. J. Math. Anal. Appl. 402, 47–56 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Park, J., Zhang, Y.: Average shadowing properties on compact metric spaces. Commun. Korean Math. Soc. 21, 355–361 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Richeson, D., Wiseman, J.: Chain recurrence rates and topological entropy. Topol. Appl. 156, 251–261 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, H.Y., Zeng, P.: On partial shadowing of average pseudo-orbits. Sci. Chin. Math. 46, 781–792 (2016). (in Chinese)Google Scholar
  23. 23.
    Wang, Y., Niu, Y.X.: Strong ergodicity of systems with the average shadowing property. Dyn. Syst. 29(1), 18–25 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, R.S., Shen, S.L.: Psuedo-orbit-tracing and completely positive entropy. Acta Math. Sin. 42, 99–104 (1999). (in Chinese)zbMATHGoogle Scholar
  25. 25.
    Ye, X.D., Huang, W., Shao, S.: Introduction of Topological Dynamical Systems. Science Press, Beijing (2008)Google Scholar
  26. 26.
    Wu, X.X., Oprocha, P., Chen, G.R.: On various definitions of shadowing with average error in tracing. Nonlinearity 29, 1942–1972 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Department of MathematicsGuangzhou UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsZhaoqing UniversityZhaoqingPeople’s Republic of China

Personalised recommendations