Generalized Doubly Stochastic Matrices and Linear Preservers of D-majorization
Original Paper
First Online:
- 31 Downloads
Abstract
D-majorization is a group-induced cone ordering on \({\mathbb {R}}^{n}\) induced by group \(G=\{cP: c\in \{-1,1\},\ \ P\in {\mathcal {P}}(n)\}\), where \({\mathcal {P}}(n)\) is the set of all n-by-n permutation matrices. For x, \(y\in {\mathbb {R}}^{n}\), x is said to be D-majorized by y (denoted by \(x\prec _{D}y\)) if there exists some \(D\in \mathrm{Conv(G)}\) such that \(x=Dy\). In the present paper, the concept of D-majorization is studied and then the linear preservers of this concept are characterized.
Keywords
D-majorization Generalized doubly stochastic matrix Linear preserverMathematics Subject Classification
Primary 15A04 Secondary 15A51Notes
References
- 1.Ando, T.: Majorization, doubly stochastic matrices, and comparision of eigenvalues. Linear Algebra Appl. 118, 163–248 (1989)MathSciNetCrossRefGoogle Scholar
- 2.Giovagnoli, A., Wynn, H.P.: G-majorization with applications to matrix orderings. Linear Algebra Appl. 67, 111–135 (1985)MathSciNetCrossRefGoogle Scholar
- 3.Hadian Nadoshan, M.A., Armandnejad, A.: \(B\)-majorization and its linear preservers. Linear Algebra Appl. 178, 218–227 (2013)MathSciNetzbMATHGoogle Scholar
- 4.Li, C.K., Poon, E.: Linear operators preservering directional majorization. Linear Algebra Appl. 325, 141–146 (2001)MathSciNetCrossRefGoogle Scholar
- 5.Mohammadhasani, A., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra Appl. 423, 255–261 (2007)MathSciNetCrossRefGoogle Scholar
- 6.Niezgoda, M.: Cone orderings, group majorizations and similarly separable vectors. Linear Algebra Appl. 436, 579–594 (2012)MathSciNetCrossRefGoogle Scholar
- 7.Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications. Springer, New York (2011)CrossRefGoogle Scholar
Copyright information
© Iranian Mathematical Society 2019