Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 5, pp 1389–1406 | Cite as

Weighted Space and Bloch-Type Space on the Unit Ball of an Infinite Dimensional Complex Banach Space

  • Zhenhan Tu
  • Liangpeng XiongEmail author
Original Paper


Let \({\mathbf {B}}_{{\mathbb {X}}}\) be the open unit ball of a complex Banach space \({\mathbb {X}}\), which may beinfinite dimensional. The weighted composition operator and weighted space defined on \({\mathbf {B}}_{{\mathbb {X}}}\) are introduced. We obtain the boundedness and compactness of the weightedcomposition operator from the Bloch-type spaces to the weighted spaces, and some properties with the Bloch-type spaces are given. Our main results generalize theprevious works on the Euclidean unit ball \({\mathbb {B}}^n\) to the case of \({\mathbf {B}}_{{\mathbb {X}}}\).


Boundedness Complex Banach space Compactness Weighted composition operator Weighted Bloch-type space 

Mathematics Subject Classification

47B38 32A37 46B15 



The project is supported by the National Natural Science Foundation of China (no. 11671306).


  1. 1.
    Anderson, J.M., Clunie, J.G., Pommerenke, Ch.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Allen, R.F., Colonna, F.: Weighted composition operators from \(H^{\infty }\) to the Bloch space of a bounded homogeneous domain. Integr. Equ. Oper. Theory 66, 21–40 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blasco, O., Galindo, P., Miralles, A.: Bloch functions on the unit ball of an infinite dimensional Hilbert space. J. Funct. Anal. 267, 1188–1204 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blasco, O., Galindo, P., Lindström, M., Miralles, A.: Composition operators on the Bloch space of the unit ball of a Hilbert space. Banach J. Math. Anal. 11, 311–334 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chu, C.-H., Hamada, H., Honda, T., Kohr, G.: Bloch functions on bounded symmetric domains. J. Funct. Anal. 272, 2412–2441 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bai, H.B., Jiang, Z.J.: Generalized weighted composition operators from Zygmund spaces to Bloch–Orlicz type spaces. Appl. Math. Comput. 273, 89–97 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Deng, F., Ouyang, C.H.: Bloch spaces on bounded symmetric domains in complex Banach spaces. Sci. China Ser. A 49, 1625–1632 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fang, Z.S., Zhou, Z.H.: Extended Cesàro operators from generally weighted Bloch spaces to Zygmund space. J. Math. Anal. Appl. 359, 499–507 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hamada, H.: Bloch-type spaces and extended Cesàro operators in the unit ball of a complex Banach space. Sci. China Math. (2018). MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hamada, H.: Weighted composition operators from H\(^{\infty }\) to the Bloch space of infinite dimensional bounded symmetric domains. Complex Anal. Oper. Theory 12, 207–216 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hahn, K.T.: Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem. Can. J. Math. 27, 446–458 (1975)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krantz, S.G., Stević, S.: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 71, 1772–1795 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503–529 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, S., Stević, S.: Products of composition and integral type operators from \(H^{\infty }\) to the Bloch space. Complex Var. Elliptic Equ. 53, 463–474 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, S., Stević, S.: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338, 1282–1295 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, H.: On an integral-type operator from the Bloch space to mixed norm spaces. Appl. Math. Comput. 273, 624–630 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pommerenke, C.: On Bloch functions. J. Lond. Math. Soc. 2, 689–695 (1970)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stević, S.: On an integral operator from the Zygmund space to the Bloch-type space on the unit ball. Glasgow Math. J. 51, 272–287 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sehba, B., Stević, S.: On some product-type operators from Hardy–Orlicz and Bergman–Orlicz spaces to weighted-type spaces. Appl. Math. Comput. 233, 565–581 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Timoney, R.M.: Bloch functions in several complex variables. I. Bull. Lond. Math. Soc. 12, 241–267 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tang, X.: Extended Cesàro operators between Bloch-type spaces in the unit ball of \({\mathbb{C}}^n\). J. Math. Anal. Appl. 326, 1199–1211 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, X.: Weighted composition operators between \(\mu \)-Bloch spaces on the unit ball. Sci. China Ser. A 48, 1349–1368 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhu, X.L.: Generalized weighted composition operators on Bloch-type spaces. J. Inequal. Appl. 2015, 1–9 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations