Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 593–605 | Cite as

Suborbital Graphs for the Group \(\Gamma _{C}(N)\)

  • Nazlı Yazıcı GözütokEmail author
  • Bahadır Özgür Güler
Original Paper


We investigate suborbital graphs for an imprimitive action of the group \(\Gamma _{C}(N)\) on a maximal subset of extended rational numbers. We will investigate suborbital graphs arising from this action and its some properties.


Normalizer Congruence subgroup Suborbital graphs 

Mathematics Subject Classification

Primary 20H10 Secondary 05C25 



The first author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during her doctorate studies.


  1. 1.
    Akbaş, M.: The normalizer of modular subgroups. Ph.D. Thesis, University of Southampton (1989)Google Scholar
  2. 2.
    Akbaş, M., Singerman, D.: The normalizer of \(\Gamma _{0}(N)\) in \({\rm PSL}(2, R)\). Glasg. Math. 32, 317–327 (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Akbaş, M.: On suborbital graphs for the modular group. Bull. Lond. Math. Soc. 33, 647–652 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Biggs, N.L., White, A.T.: Permutation Groups and Combinatorial Structures. London Mathematical Society Lecture Note Series, 33rd edn. Cambridge University Press, Cambridge (1979)CrossRefGoogle Scholar
  5. 5.
    Chua, K.S., Lang, M.L.: Congruence subgroups associated to the monster. Exp. Math. 13(3), 343–360 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Güler, B.Ö., et al.: Elliptic elements and circuits in suborbital graphs. Hacet. J. Math. Stat. 40(2), 203–210 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Güler, B.Ö., et al.: Suborbital graphs for the group \(\Gamma ^2\). Hacet. J. Math. Stat. 44(5), 1033–1044 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Güler, B.Ö., Kör, T., Şanlı, Z.: Solution to some congruence equations via suborbital graphs. Springerplus 2016(5), 1–11 (2016)Google Scholar
  11. 11.
    Jones, G.A., Singerman, D., Wicks, K.: The Modular Group and Generalized Farey Graphs. London Mathematical Society Lecture Note Series, vol. 160, pp. 316–338. Cambridge University Press, Cambridge (1991)Google Scholar
  12. 12.
    Kader, S., Güler, B.Ö.: On suborbital graphs for the extended Modular group \(\hat{\Gamma }\). Graphs Comb. 29(6), 1813–1825 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kader, S.: Circuits in suborbital graphs for the normalizer. Graphs Comb. 33(6), 1531–1542 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kesicioğlu, Y., Akbaş, M., Beşenk, M.: Connectedness of a suborbital graph for congruence subgroups. J. Inequal. Appl. 117, 1–7 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Keskin, R.: On suborbitals graphs for some Hecke groups. Discrete Math. 234(1–3), 53–64 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Keskin, R.: Suborbital graphs for the normalizer of \(\Gamma _{0}(m)\). Eur. J Comb. 27(2), 193–206 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Keskin, R., Demirturk, B.: On suborbital graphs for the normalizer of \(\Gamma _{0}(N)\). Electron. J. Comb. 16(1), 116–133 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Köroglu, T., Güler, B.Ö., Şanlı, Z.: Suborbital graphs for the Atkin–Lehner group. Turk. J. Math. 41, 235–243 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maclachlan, C.: Groups of units of zero ternary quadratic forms. Proc. R. Soc. Edinb. 88(A), 141–157 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Neumann, P.M.: Finite permutation groups, edge-coloured graphs and matrices. In: Curran, M.P.J. (ed.) Topics in Group Theory and Computation. Academic Press, London (1977)Google Scholar
  21. 21.
    Rankin, R.A.: Modular Forms and Functions. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  22. 22.
    Schoeneberg, B.: Elliptic Modular Functions. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sims, C.C.: Graphs and finite permutation groups. Math. Z. 95, 76–86 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups. Bull. Lond. Math. Soc. 2, 319–323 (1970)CrossRefzbMATHGoogle Scholar
  25. 25.
    Tsuzuku, T.: Finite Groups and Finite Geometries. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  26. 26.
    White, A.T.: Graphs, Groups and Surfaces. Elsevier, North-Holland (1985)Google Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of MathematicsKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations