Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 475–493

Computational Legendre Tau Method for Volterra Hammerstein Pantograph Integral Equations

• H. Ansari
• P. Mokhtary
Original Paper

Abstract

In this paper, we develop and analyze a computational Legendre Tau method for the numerical solution of pantograph-type Volterra Hammerstein integral equations. We present the method in two stages. First, by applying the shifted Legendre polynomials as basis functions and using some simple matrix and vector operations, we show that the Tau solution of the problem can be obtained by solving a sparse upper triangular nonlinear algebraic system which can be solved directly by forward substitution method; and second, we prove that under suitable regularity assumptions on data, the obtained approximate solution converges to the exact ones with a high rate of convergence. The stability analysis of the proposed technique is also investigated, and finally some illustrative examples are given to confirm the effectiveness and reliability of the proposed method.

Keywords

Volterra Hammerstein pantograph integral equations Legendre Tau method Convergence and stability analysis

45D05 65R20

References

1. 1.
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
2. 2.
Atkinson, K.E., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework, Texts in Applied Mathematics, vol. 39, 3rd edn. Springer, Dordrecht (2009)
3. 3.
Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)
4. 4.
Brunner, H.: Collocation Methods for Volterra and Related Functional Equations. Cambridge University Press, Cambridge (2004)
5. 5.
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)
6. 6.
Cai, H., Qi, J.: A Legendre–Galerkin method for solving general Volterra functional integral equations. Numer. Algorithms 73(4), 1159–1180 (2016)
7. 7.
Ghoreishi, F., Hadizadeh, M.: Numerical computation of the Tau approximation for the Volterra-Hammerestein integral equations. Numer. Algorithms 52, 541–559 (2009)
8. 8.
Ghoreishi, F., Mokhtary, P.: Spectral collocation method for multi-order fractional differential equations. Int. J. Comput. Methods 11, 1350072 (2014). . [23 pages]
9. 9.
Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations. Comput. Math. Appl. 61, 30–43 (2011)
10. 10.
Guo, B.Y.: Spectral Methods and Their Applications. World Scientific Publishing Company, Singapore (1998)
11. 11.
Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2007)
12. 12.
Iserles, A., Liu, Y.: On pantograph integro-differential equations. J. Integral Equ. Appl. 6, 213–237 (1994)
13. 13.
Iserles, A., Liu, Y.: Integro-differential equations and generalized hypergeometric functions. J. Math. Anal. Appl. 208, 404–424 (1997)
14. 14.
Iserles, A., Liu, Y.: On neutral functional-differential equations with proportional delays. J. Math. Anal. Appl. 207, 73–95 (1997)
15. 15.
Ishitawa, E., Muroya, Y.: On collocation methods for delays differential and Volterra integral equations with proportional delay. Front. Math. China 4(1), 89–111 (2009)
16. 16.
Ishtiaq, Ali, Brunner, H., Tang, T.: Spectral methods for pantograph-type differential and integral equations with multiple delays. Front. Math. China 46(1), 49–61 (2009)
17. 17.
Ishtiaq, Ali, Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equation and its convergence analysis. J. Comput. Math. 27, 254–265 (2009)
18. 18.
Muroya, Y., Ishiwata, E., Brunner, H.: On the attainable order of collocation methods for patograph integro-differential equations. J. Comput. Appl. Math. 152, 347–366 (2003)
19. 19.
Shen, J., Tang, T., Wang, Li-Lian, Methods, Spectral: Algorithms, Analysis and Applications. Springer, Berlin (2011)Google Scholar
20. 20.
Tohidi, E., Bhrawy, A.H., Erfani, K.: A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37, 4283–4294 (2013)
21. 21.
Wei, Y., Chen, Y.: Legendre spectral collocation methods for pantograph Volterra delay-integro differential equations. J. Sci. Comput. 53, 672–688 (2012)
22. 22.
Yuzbasi, S.: Laguerre approach for solving pantograph-type Volterra integro-differential equations. Appl. Math. Comput. 232, 1183–1199 (2014)