Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 401–410 | Cite as

An Alternative Method for Construction of Free Polyadic Groups

  • Elnaz Nobahar
  • Mehrdad AzadiEmail author
  • Hossein Doostie
Original Paper
  • 6 Downloads

Abstract

In this article, we introduce a new method to constructing free polyadic groups which is more natural than the previous one given in Khodabandeh and Shahryari (Commun Algebra 45(3): 1227–1238, 2017). This new approach is a natural generalization of the construction of ordinary free groups as sets of reduced group words.

Keywords

Polyadic groups n-Ary groups Free polyadic groups 

Mathematics Subject Classification

Primary 20N15 Secondary 08A99 14A99 

References

  1. 1.
    Artamonov, V.: Free \(n\)-groups. Matematicheskie Zametki 8, 499–507 (1970)MathSciNetGoogle Scholar
  2. 2.
    Artamonov, V.: On Schreier varieties of \(n\)-groups and \(n\)-semigroups. Trudy Seminara Imeni I.G. Petrovskogo 5, 193–203 (1979)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dörnte, W.: Unterschungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29, 1–19 (1929)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dudek, W.: Varieties of polyadic groups. Filomat 9, 657–674 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dudek, W.: Remarks on \(n\)-groups. Demonstr. Math. 13, 65–181 (1980)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dudek, W., Glazek, K.: Around the Hosszú–Gluskin theorem for n-ary groups. Discrete Math. 308, 4861–4876 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dudek, W., Michalski, J.: On a generalization of Hosszú theorem. Demonstr. Math. 15, 437–441 (1982)zbMATHGoogle Scholar
  8. 8.
    Dudek, W., Michalski, J.: On retract of polyadic groups. Demonstr. Math. 17, 281–301 (1984)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dudek, W., Shahryari, M.: Representation theory of polyadic groups. Algebra Represent Theory 15, 29–51 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Galmak, A.: N-ary groups. Gomel University Press, Gomel (2003)Google Scholar
  11. 11.
    Galmak, A.: Remarks on polyadic groups. Quasigroups Relat. Syst. 7, 67–70 (2000)MathSciNetGoogle Scholar
  12. 12.
    Gleichgewicht, B., Glazek, K.: Remarks on n-groups as abstract algebras. Colloq. Math. 17, 209–219 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hosszú, M.: On the explicit form of \(n\)-groups. Publ. Math. 10, 88–92 (1963)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kasner, E.: An extension of the group concept. Bull. Am. Math. Soc. 10, 290–291 (1904)zbMATHGoogle Scholar
  15. 15.
    Khodabandeh, H., Shahryari, M.: On the representations and automorphisms of polyadic groups. Commun. Algebra 40, 2199–2212 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Khodabandeh, H., Shahryari, M.: Simple polyadic groups. Sib. Math. J. 55, 734–744 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Khodabandeh, H., Shahryari, M.: Equations in polyadic groups. Commun. Algebra 45(3), 1227–1238 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Post, E.: Polyadic groups. Trans. Am. Math. Soc. 48, 208–350 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shahryari, M.: Representations of finite polyadic groups. Commun. Algebra 40, 1625–1631 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sokolov, E.: On the Gluskin–Hosszú theorem for Dornte \(n\)-groups. Istor. -Mat. Issled 39, 187–189 (1976)zbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of MathematicsCentral Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations