Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 377–399 | Cite as

Paulsen Problem for A-admissible Frames

  • Zeinab GolinejadEmail author
  • Ahmad Safapour
Original Paper


In this paper, we present an algorithm—gradient descent of the frame potential—for increasing the degree of tightness of any finite admissible frame, and show that this algorithm converges to an admissible tight frame. We provide an explicit answer to the generalizations of the Paulsen problem.


Frame Tight frame Frame potential A-admissible 

Mathematics Subject Classification

Primary 42C15 Secondary 42C40 



The authors would like to thank of referees for their useful comments and suggestions.


  1. 1.
    Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18, 357–385 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodmann, B., Casazza, P.G.: The road to equal-norm Parseval frames. Funct. Anal. 2(2), 379–420 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cahill, J., Casazza, P.G.: The Paulsen problem in operator theory. Oper. Mat. 1(1), 117–130 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Casazza, P.G.: Custom Building Fnite Frames in Wavelets Frames and Operator Theory. American Mathematical Society, MD (2003)Google Scholar
  5. 5.
    Casazza, P.G., Fickus, M.: Minimizing fusion frame potential. Acta Appl. Math. 107, 7–24 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Casazza, P.G., Fickus, M., Mixon, D.G.: Auto-tuning unit norm frames. Appl. Comp. Harmon. Anal 32, 1–15 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations