Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 337–344 | Cite as

Notes on Gorenstein Flat Modules

  • Yanjiong Yang
  • Xiaoguang YanEmail author
Original Paper
  • 33 Downloads

Abstract

In this paper, we explore conditions under which Gorenstein flat modules are Gorenstein projective. We prove that all countably presented strongly Gorenstein flat modules are Gorenstein projective over perfect rings. Moreover, we show that if the base ring R is \(\sum \)-pure injective as an R-module, then the class of Gorenstein flat modules coincides with the class of Gorenstein projective modules, and hence all modules have Gorenstein projective covers. And as a corollary, we give a characterization of coherent perfect rings by Gorenstein projective and Gorenstein flat modules.

Keywords

Strict Mittag–Leffler module Gorenstein projective module Gorenstein flat module 

Mathematics Subject Classification

Primary 16D40 Secondary 16E05 16E30 

Notes

Acknowledgements

This research was supported by NFSC (No. 11701408 and No. 11571165) and NSF of the Jiangsu Higher Education Institution (No. 16KJD1100 04). The authors would like to thank the referee for the very helpful comments and suggestions.

References

  1. 1.
    Angeleri Hügel, L., Herbera, D.: Mittag–Leffler conditions on modules. Indiana Univ. Math. J. 57(5), 2459–2517 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94, 92–146 (1969)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective and flat modules. J. Pure. Appl. Algebra 210(2), 437–445 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Emmanouil, I., Talelli, O.: On the flat length of injective modules. J. Lond. Math. Soc. 84(2), 408–432 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Emmanouil, I.: On the finiteness of Gorenstein homological dimensions. J. Algebra 372, 376–396 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Enochs, E.E., Jenda, O.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra, De Gruyter Exp. Math., vol. 30. Walter de Gruyter, Berlin (2000)CrossRefGoogle Scholar
  8. 8.
    Enochs, E.E., Jenda, O., Torrecillas, B.: Gorenstein flat modules. J. Nanjing Univ. Math. Biquarterly 10(1), 1–9 (1993)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Estrada, S., Iacob, A., Odabasi, S.: Gorenstein flat and projective (pre) covers. Publ. Math. 91(1), 111–121 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Grothendieck, A.: EGA III. Publ. Math. Inst. Hautes Etudes Sci. 11, 17 (1961)Google Scholar
  11. 11.
    Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math., vol. 41. Walter de Gruyter, Berlin (2006)CrossRefGoogle Scholar
  12. 12.
    Yang, G., Liang, L.: All modules have Gorenstein flat precovers. Commun. Algebra 42(7), 3078–3085 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yang, Y., Yan, X., Zhu, X.: Strict Mittag–Leffler conditions and Gorenstein modules. Algebr. Represent. Theory 19(6), 1451–1466 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yang, Y., Zhu, X., Yan, X.: Strict Mittag–Leffler conditions on Gorenstein modules. Commun. Algebra 44(4), 1754–1766 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zimmermann, W.: Modules with chain conditions for finite matrix subgroups. J. Algebra 190(1), 68–87 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of MathematicsTaizhou UniversityTaizhouChina
  2. 2.School of Information EngineeringNanjing Xiaozhuang UniversityNanjingChina

Personalised recommendations