Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 1, pp 205–212 | Cite as

Some Results on the c-Nilpotent Multiplier of a Pair of Lie Algebras

  • Homayoon ArabyaniEmail author
Original Paper
  • 37 Downloads

Abstract

The Schur multiplier of a Lie algebra L, was introduced by Batten et al. (Commun Algebra 24:4319–4330, 1996). Salemkar and colleagues generalized the concept of the Schur multiplier to the c-nilpotent multiplier. Recently, the author introduced some exact sequences and gived some upper bounds for the dimension of the c-nilpotent multiplier of a pair of Lie algebras. In the present paper, we will extend these results. Moreover, we give some isomorphisms for the c-nilpotent multiplier of a pair of Lie algebras.

Keywords

Pair of Lie algebras Schur multiplier c-nilpotent multiplier 

Mathematics Subject Classification

Primary 17B30 Secondary 17B99 

Notes

Acknowledgements

The author would like to thank the referee for his/her comments.

References

  1. 1.
    Arabyani, H.: Bounds for the dimension of the \(c\)-nilpotent multiplier of a pair of Lie algebras Bull. Iran. Math. Soc. 43(7), 2411–2418 (2017)MathSciNetGoogle Scholar
  2. 2.
    Arabyani, H., Saeedi, F.: On dimensions of derived algebra and central factor of a Lie algebra. Bull. Iran. Math. Soc. 41, 1093–1102 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arabyani, H., Saeedi, F., Moghaddam, M.R.R., Khamseh, E.: Characterization of nilpotent Lie algebras pair by their Schur multipliers. Commun. Algebra 42, 5474–5483 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arabyani, H., Safa, H.: Some properties of \(c\)-covers of a pair of Lie algebras. Quaest. Math. (2018).  https://doi.org/10.2989/16073606.2018.1437482
  5. 5.
    Araskhan, M.: On the \(c\)-Covers and a special ideal of Lie algebras. Iran. J. Sci. Technol. Trans. A Sci. 40(3), 165–169 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Araskhan, M.: The dimension of the \(c\)-nilpotent multiplier. J. Algebra 386, 105–112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Araskhan, M., Rismanchian, M.R.: Dimension of the \(c\)-nilpotent multiplier of Lie algebras. Proc. Indian Acad. Sci. (Math. Sci.) 126(3), 353–357 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Batten, P., Stitzinger, E.: On covers of Lie algebras. Commun. Algebra 24, 4301–4317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Batten, P., Moneyhun, K., Stitzinger, E.: On characterizing nilpotent Lie algebras by their multipliers. Commun. Algebra 24, 4319–4330 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bear, R.: Representation of groups as quotient groups, I, II and III. Trans. Am. Math. Soc. 58, 295–419 (1945)Google Scholar
  11. 11.
    Ellis, G.: The Schur multiplier of a pair of groups. Appl. Categ. Struct. 6, 355–371 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karpilovsky, G.: The Schur Multiplier. Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  13. 13.
    Moneyhun, K.: Isoclinisms in Lie algebras. Algebras Groups Geom. 11, 9–22 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Niroomand, P., Russo, F.: A note on the Schur multiplier of a nilpotent Lie algebra. Commun. Algebra 39, 1293–1297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rismanchian, M.R., Araskhan, M.: Some inequalities for the dimension of the Schur multiplier of a pair of (nilpotent) Lie algebras. J. Algebra 352, 173–179 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rismanchian, M.R., Araskhan, M.: Some properties on the Schur multiplier of a pair of Lie algebras. J. Algebra Appl. 11, 1250011 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Robinson, D.J.S.: A Course in the Theory of Groups. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Saeedi, F., Salemkar, A.R., Edalatzadeh, B.: The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras. J. Lie Theory 21, 491–498 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Safa, H., Arabyan, H.: On \(c\)-nilpotent multiplier and \(c\)-covers of a pair of Lie algebras. Commun. Algebra 45, 4429–4434 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Salemkar, A.R., Alamian, V., Mohammadzadeh, H.: Some properties of the Schur multiplier and covers of Lie algebras. Commun. Algebra 36, 697–707 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Salemkar, A.R., Edalatzadeh, B., Araskhan, M.: Some inequalities for the dimension of the \(c\)-nilpotent multiplier of Lie algebras. J. Algebra 322, 575–1585 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Salemkar, A.R., Mirzaei, F.: Characterizing \(n\)-isoclinism classes of Lie algebras. Commun. Algebra 38, 3392–3403 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schur, I.: Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 127, 20–50 (1904)MathSciNetzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Neyshabur BranchIslamic Azad UniversityNeyshaburIran

Personalised recommendations