Peripheral Local Spectrum Preservers of Jordan Products of Operators

Original Paper
  • 5 Downloads

Abstract

We completely describe surjective maps preserving the peripheral local spectrum of Jordan product of operators. Let \(x_0 \in X\) and \(y_0 \in Y \) be two nonzero vectors. We show that a map \(\varphi \) from B(X) onto B(Y) satisfies
$$\begin{aligned} \gamma _{ST+ TS}(x_0)=\gamma _{\varphi (S)\varphi (T)+ \varphi (T)\varphi (S)}(y_0), \quad (T,S\in B(X)), \end{aligned}$$
if and only if there exists a bijective bounded linear map from X into Y such that\( A(x_0)=y_0\) and either \(\varphi (T)=-ATA^{-1}\) for all \(T \in B(X) \) or \(\varphi (T)=ATA^{-1}\) for all \(T \in B(X)\).

Keywords

Jordan product Peripheral spectrum Nonlinear preserver maps 

Mathematics Subject Classification

Primary 47B49 Secondary 47A10 47A11 

References

  1. 1.
    Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer, Dordrecht (2004)MATHGoogle Scholar
  2. 2.
    Aupetit, B.: An improvement of Kaplansky’s lemma on locally algebraic operators. Studia Math. 88, 275–278 (1988)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baribeau, L., Ransford, T.: Non-linear spectrum-preserving maps. Bull. Lond. Math. Soc. 32, 8–14 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bhatia, R., Semrl, P., Sourour, A.: Maps on matrices that preserve the spectra lradius distance. Studia Math. 134, 99–110 (1999)MathSciNetMATHGoogle Scholar
  5. 5.
    Bourhim, A., Jari, T., Mashreghi, J.: Peripheral local spectrum preservers and maps increasing the local spectral radius. Oper. Matrices 10(1), 189–208 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bourhim, A., Mabrouk, M.: Jordan product and local spectrum preservers. Studia Math. 234, 97–120 (2016)MathSciNetMATHGoogle Scholar
  7. 7.
    Bourhim, A., Mashreghi, J.: Maps preserving the local spectrum of product of operators. Glasgow Math. J. 57, 709–718 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bourhim, A., Mashreghi, J.: Maps preserving the local spectrum of triple product of operators. Linear Multilinear Algebra 63, 765–773 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bourhim, A., Miller, V.G.: Linear maps on \(M _n ( \mathbb{C} )\) preserving the local spectral radius. Studia Math. 188, 67–75 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bourhim, A., Ransford, T.: Additive maps preserving local spectrum. Integr. Equ. Oper. Theory 55, 377–385 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Costara, C.: Local spectrum linear preservers at non- ïňĄxed vectors. Linear Algebra Appl. 457, 154–161 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cui, J.L., Li, C.K.: Maps preserving peripheral spectrum of Jordan products of operators. Oper. Matrices 6, 129–146 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Du, S., Hou, J., Bai, Z.: Nonlinear maps preserving similarity on B (H). Linear Algebra Appl. 422, 506–516 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hatori, O., Miura, T., Takagi, H.: Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property. Proc. Am. Math. Soc. 134, 2923–2930 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Hatori, O., Miura, T., Takagi, H.: Unital and multiplicatively spectrum-preserving surjections between semisimple commutative Banach algebras are linear and multi-plicative. J. Math. Anal. Appl. 326, 281–296 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hosseini, M., Sady, F.: Multiplicatively range-preserving maps between Banach function algebras. J. Math. Anal. Appl. 357, 314–322 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hou, J.C., Di, Q.H.: Maps preserving numerical ranges of operator products. Proc. Am. Math. Soc. 134, 1435–1446 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hou, J.C., Li, C.K., Wong, N.C.: Jordan isomorphisms and maps preserving spectra of certain operator products. Studia Math. 184, 31–47 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kaplansky, I.: Infinite Abelian Groups. University of Michigan Press, Ann Arbor (1954)MATHGoogle Scholar
  20. 20.
    Kuzma, B., Petek, T.: A note on Frobenius norm preservers of Jordan product. Oper. Matrices 7, 915–925 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lambert, S., Luttman, A., Tonev, T.: Weakly peripherally-multiplicative mappings between uniform algebras. In: Function Spaces, Contemp. Math., vol. 435. Amer. Math. Soc., Providence, pp. 265–281 (2007)Google Scholar
  22. 22.
    Luttman, A., Lambert, S.: Norm conditions for uniform algebra isomorphisms. Cent. Eur. J. Math. 6, 272–280 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Luttman, A., Tonev, T.: Uniform algebra isomorphisms and peripheral multiplicativity. Proc. Am. Math. Soc. 135, 3589–3598 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Marcus, M., Moyls, B.N.: Linear transformations on algebras of matrices. Can. J. Math. 11, 61–66 (1959)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Miura, T., Honma, D.: A generalization of peripherally-multiplicative surjections between standard operator algebras. Cent. Eur. J. Math. 7, 479–486 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rao, N.V., Roy, A.K.: Multiplicatively spectrum-preserving maps of function algebras. Proc. Am. Math. Soc. 133, 1135–1142 (2005)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rao, N.V., Roy, A.K.: Multiplicatively spectrum-preserving maps of function algebras II. Proc. Edinb. Math. Soc. 48, 219–229 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of mathematics, Faculty of sciencesUniversity of ZanjanZanjanIran

Personalised recommendations