Advertisement

Hyponatriämie/Hypernatriämie – Diagnose und Therapie basierend auf der Analyse von physiologischen Regulationsmechanismen

  • Christoph SchwarzEmail author
  • Gregor Lindner
Originalien
  • 1 Downloads

Zusammenfassung

Hypo- und Hypernatriämien sind Störungen des Wasserhaushalts und können nur durch eine erhebliche Beeinträchtigung von dessen Regulationsmechanismen entstehen. Hypernatriämien entwickeln sich durch eine Reduktion des Durstempfindens oder prinzipiell der Möglichkeit zu trinken und werden von einer Störung der Harnkonzentrationsmechanismen oder den Verlust von hypotonen Flüssigkeiten begleitet. Eine Substitution dieser Verluste von hypotonen Körperflüssigkeiten durch isotone oder hypertone Lösungen erhöht die Wahrscheinlichkeit des Auftretens einer Hypernatriämie. Für die Entstehung einer Hyponatriämie ist eine (in)adäquate Ausschüttung von Vasopressin verantwortlich, da dies zu einer Retention von Wasser ohne Natrium führt. Die Zufuhr von hypotonen Lösungen in Kombination mit einer niedrigen Zufuhr an osmotisch aktiven Substanzen kann ebenfalls eine Hyponatriämie verursachen. Für die Differenzialdiagnose der Dysnatriämien ist neben der Erhebung des Volumenstatus auch eine Analyse der renalen Natrium- und Wasserausscheidung eine Notwendigkeit. Diese Analyse basiert auf den physiologischen Grundprinzipien der Regulation des Wasserhaushalts. Erst diese exakte Erhebung der Grundlage für das Auftreten einer Dysnatriämie macht eine adäquate Therapie möglich.

Schlüsselwörter

Osmolalität Vasopressin Harnelektrolyte Elektrolyt-freie Wasserclearance Polyurie 

Hyponatremia/hypernatremia—diagnosis and therapy based on the analysis of physiological regulatory mechanisms

Abstract

Hypo- and hypernatremia are disturbances of water homeostasis and occur due to inadequate regulation of body sodium and water handling. Hypernatremia develops as a result of a reduction in the feeling of thirst or the ability to drink, and is often accompanied by a disturbance of the urinary concentration mechanisms or loss of hypotonic fluids. Hospitalized patients often develop hypernatremia due to an inadequate substitution of those hypotonic fluid losses by hypertonic fluids. Most cases of hyponatremia are caused by an (in)appropriate stimulation of vasopressin, because vasopressin enhances the renal retention of electrolyte-free water. In conditions without vasopressin secretion, the combination of intake of large amounts of hypotonic fluids together with low solute intake induces hyponatremia. For the correct diagnosis of dysnatremia the actual volume status and renal regulation of sodium and water handling is essential. Both factors have to be interpreted in concordance with the physiological regulation mechanisms to enable an adequate therapy.

Keywords

Osmolality Vasopressin Urine electrolytes Electrolyte-free water clearance Polyuria 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Schwarz und G. Lindner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Adrogué HJ, Madias NE (2000) Hypernatremia. N Engl J Med 342:1493–1499.  https://doi.org/10.1056/NEJM200005183422006 CrossRefPubMedGoogle Scholar
  2. 2.
    Adrogué HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342:1581–1589.  https://doi.org/10.1056/NEJM200005253422107 CrossRefPubMedGoogle Scholar
  3. 3.
    Mount D, Sayegh MH, Singh AK (2013) Core concepts in the disorders of fluid, electrolytes and acid-base balance. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Rakova N, Kitada K, Lerchl K et al (2017) Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Invest 127:1932–1943.  https://doi.org/10.1172/JCI88530 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bankir L, Yang B (2012) New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney Int 81:1179–1198.  https://doi.org/10.1038/ki.2012.67 CrossRefPubMedGoogle Scholar
  6. 6.
    McKenna K, Thompson C (1998) Osmoregulation in clinical disorders of thirst appreciation. Clin Endocrinol (oxf) 49:139–152Google Scholar
  7. 7.
    McGee S, Abernethy WB, Simel DL (1999) The rational clinical examination. Is this patient hypovolemic? JAMA 281:1022–1029CrossRefGoogle Scholar
  8. 8.
    Schreuder MF, Bökenkamp A, van Wijk JAE (2017) Interpretation of the fractional excretion of sodium in the absence of acute kidney injury: a cross-sectional study. Nephron 136:221–225.  https://doi.org/10.1159/000468547 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Musch W, Thimpont J, Vandervelde D et al (1995) Combined fractional excretion of sodium and urea better predicts response to saline in hyponatremia than do usual clinical and biochemical parameters. Am J Med 99:348–355CrossRefGoogle Scholar
  10. 10.
    Lindner G, Schwarz C, Funk G‑C (2012) Osmotic diuresis due to urea as the cause of hypernatraemia in critically ill patients. Nephrol Dial Transplant 27:962–967.  https://doi.org/10.1093/ndt/gfr428 CrossRefPubMedGoogle Scholar
  11. 11.
    Fenske W, Störk S, Blechschmidt A et al (2009) Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab 94:123–129.  https://doi.org/10.1210/jc.2008-1426 CrossRefPubMedGoogle Scholar
  12. 12.
    Balanescu S, Kopp P, Gaskill MB et al (2011) Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar States. J Clin Endocrinol Metab 96:1046–1052.  https://doi.org/10.1210/jc.2010-2499 CrossRefPubMedGoogle Scholar
  13. 13.
    Fenske W, Refardt J, Christ-Crain M (2018) Copeptin in the diagnosis of diabetes Insipidus. N Engl J Med 379:1785–1786.  https://doi.org/10.1056/NEJMc1811694 CrossRefPubMedGoogle Scholar
  14. 14.
    Adrogué HJ, Madias NE (2012) The challenge of hyponatremia. J Am Soc Nephrol 23:1140–1148.  https://doi.org/10.1681/ASN.2012020128 CrossRefPubMedGoogle Scholar
  15. 15.
    Shah SR, Bhave G (2018) Using electrolyte free water balance to rationalize and treat dysnatremias. Front Med 5:103.  https://doi.org/10.3389/fmed.2018.00103 CrossRefGoogle Scholar
  16. 16.
    Lindner G, Schwarz C (2012) Electrolyte-free water clearance versus modified electrolyte-free water clearance: do the results justify the effort? Nephron Physiol 120:1–5.  https://doi.org/10.1159/000336550 CrossRefGoogle Scholar
  17. 17.
    Lindner G, Schwarz C, Kneidinger N et al (2008) Can we really predict the change in serum sodium levels? An analysis of currently proposed formulae in hypernatraemic patients. Nephrol Dial Transplant 23:3501–3508.  https://doi.org/10.1093/ndt/gfn476 CrossRefPubMedGoogle Scholar
  18. 18.
    Titze J (2014) Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens 23:101–105.  https://doi.org/10.1097/01.mnh.0000441151.55320.c3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Titze J, Dahlmann A, Lerchl K et al (2014) Spooky sodium balance. Kidney Int 85:759–767.  https://doi.org/10.1038/ki.2013.367 CrossRefPubMedGoogle Scholar
  20. 20.
    Wald R, Jaber BL, Price LL et al (2010) Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med 170:294–302.  https://doi.org/10.1001/archinternmed.2009.513 CrossRefPubMedGoogle Scholar
  21. 21.
    Kamoi K, Ishibashi M, Yamaji T (1997) Interaction of osmotic and nonosmotic stimuli in regulation of vasopressin secretion in hypoosmolar state of man. Endocr J 44:311–317CrossRefGoogle Scholar
  22. 22.
    Arampatzis S, Frauchiger B, Fiedler G‑M et al (2012) Characteristics, symptoms, and outcome of severe dysnatremias present on hospital admission. Am J Med 125:1125.e1–1125.e7.  https://doi.org/10.1016/j.amjmed.2012.04.041 CrossRefGoogle Scholar
  23. 23.
    Renneboog B, Musch W, Vandemergel X et al (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119:71.e1–71.e8.  https://doi.org/10.1016/j.amjmed.2005.09.026 CrossRefGoogle Scholar
  24. 24.
    Lai M‑Y, Lin C‑C, Chung S‑L et al (2009) Milky plasma, diabetes, and severe hyponatremia. Kidney Int 75:996.  https://doi.org/10.1038/ki.2008.335 CrossRefPubMedGoogle Scholar
  25. 25.
    Decaux G, Musch W (2008) Clinical laboratory evaluation of the syndrome of inappropriate secretion of antidiuretic hormone. Clin J Am Soc Nephrol 3:1175–1184.  https://doi.org/10.2215/CJN.04431007 CrossRefPubMedGoogle Scholar
  26. 26.
    Cuesta M, Thompson C (2015) The relevance of hyponatraemia to perioperative care of surgical patients. Surgeon 13:163–169.  https://doi.org/10.1016/j.surge.2014.09.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Thaler SM, Teitelbaum I, Berl T (1998) “Beer potomania” in non-beer drinkers: effect of low dietary solute intake. Am J Kidney Dis 31:1028–1031CrossRefGoogle Scholar
  28. 28.
    Berl T (2008) Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol 19:1076–1078.  https://doi.org/10.1681/ASN.2007091042 CrossRefPubMedGoogle Scholar
  29. 29.
    Samuel D (2009) MELD-Na as a prognostic score for cirrhotic patients: hyponatremia and ascites are back in the game. J Hepatol 50:836–838.  https://doi.org/10.1016/j.jhep.2008.12.015 CrossRefPubMedGoogle Scholar
  30. 30.
    Gheorghiade M, Abraham WT, Albert NM et al (2007) Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J 28:980–988.  https://doi.org/10.1093/eurheartj/ehl542 CrossRefPubMedGoogle Scholar
  31. 31.
    Verbrugge FH, Steels P, Grieten L et al (2015) Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol 65:480–492.  https://doi.org/10.1016/j.jacc.2014.12.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Channavajjhala SK, Bramley R, Peltz T et al (2019) Urinary extracellular vesicle protein profiling and endogenous lithium clearance support excessive renal sodium wasting and water reabsorption in Thiazide-induced Hyponatremia. Kidney Int Rep 4:139–147.  https://doi.org/10.1016/j.ekir.2018.09.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Ware JS, Wain LV, Channavajjhala SK et al (2017) Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia. J Clin Invest 127:3367–3374.  https://doi.org/10.1172/JCI89812 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Clark BA, Shannon RP, Rosa RM, Epstein FH (1994) Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol 5:1106–1111PubMedGoogle Scholar
  35. 35.
    Maesaka JK, Imbriano LJ, Miyawaki N (2018) High prevalence of renal salt wasting without cerebral disease as cause of hyponatremia in general medical wards. Am J Med Sci 356:15–22.  https://doi.org/10.1016/j.amjms.2018.03.020 CrossRefPubMedGoogle Scholar
  36. 36.
    Maesaka JK, Imbriano LJ, Miyawaki N (2018) Determining fractional Urate excretion rates in hyponatremic conditions and improved methods to distinguish cerebral/renal salt wasting from the syndrome of inappropriate secretion of Antidiuretic hormone. Front Med.  https://doi.org/10.3389/fmed.2018.00319 CrossRefGoogle Scholar
  37. 37.
    Maesaka JK, Imbriano L, Mattana J et al (2014) Differentiating SIADH from cerebral/renal salt wasting: failure of the volume approach and need for a new approach to hyponatremia. J Clin Med 3:1373–1385.  https://doi.org/10.3390/jcm3041373 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Spasovski G, Vanholder R, Allolio B et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant 29(Suppl 2):i1–i39.  https://doi.org/10.1093/ndt/gfu040 CrossRefPubMedGoogle Scholar
  39. 39.
    Barsoum NR, Levine BS (2002) Current prescriptions for the correction of hyponatraemia and hypernatraemia: are they too simple? Nephrol Dial Transplant 17:1176–1180CrossRefGoogle Scholar
  40. 40.
    Rondon-Berrios H, Tandukar S, Mor MK et al (2018) Urea for the treatment of hyponatremia. Clin J Am Soc Nephrol 13:1627–1632.  https://doi.org/10.2215/CJN.04020318 CrossRefPubMedGoogle Scholar
  41. 41.
    Verbalis JG, Goldsmith SR, Greenberg A et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126:S1–S42.  https://doi.org/10.1016/j.amjmed.2013.07.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Schrier RW, Gross P, Gheorghiade M et al (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112.  https://doi.org/10.1056/NEJMoa065181 CrossRefPubMedGoogle Scholar
  43. 43.
    Verbalis JG, Ellison H, Hobart M et al (2016) Tolvaptan and neurocognitive function in mild to moderate chronic hyponatremia: a randomized trial (INSIGHT). Am J Kidney Dis 67:893–901.  https://doi.org/10.1053/j.ajkd.2015.12.024 CrossRefPubMedGoogle Scholar
  44. 44.
    Hirai K, Shimomura T, Moriwaki H et al (2016) Risk factors for hypernatremia in patients with short- and long-term tolvaptan treatment. Eur J Clin Pharmacol 72:1177–1183.  https://doi.org/10.1007/s00228-016-2091-4 CrossRefPubMedGoogle Scholar
  45. 45.
    Adrogué HJ, Madias NE (1997) Aiding fluid prescription for the dysnatremias. Intensive Care Med 23:309–316CrossRefGoogle Scholar
  46. 46.
    Perianayagam A, Sterns RH, Silver SM et al (2008) DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol 3:331–336.  https://doi.org/10.2215/CJN.03190807 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Qian Q (2019) Hypernatremia. Clin J Am Soc Nephrol.  https://doi.org/10.2215/CJN.12141018 CrossRefPubMedGoogle Scholar
  48. 48.
    Funk G‑C, Lindner G, Druml W et al (2010) Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med 36:304–311.  https://doi.org/10.1007/s00134-009-1692-0 CrossRefPubMedGoogle Scholar
  49. 49.
    Palevsky PM, Bhagrath R, Greenberg A (1996) Hypernatremia in hospitalized patients. Ann Intern Med 124:197–203CrossRefGoogle Scholar
  50. 50.
    Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG (1999) Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med 27:1105–1108CrossRefGoogle Scholar
  51. 51.
    Andersen LJ, Andersen JL, Pump B, Bie P (2002) Natriuresis induced by mild hypernatremia in humans. Am J Physiol Regul Integr Comp Physiol 282:R1754–R1761.  https://doi.org/10.1152/ajpregu.00732.2001 CrossRefPubMedGoogle Scholar
  52. 52.
    Bhasin B, Velez JCQ (2016) Evaluation of polyuria: the roles of solute loading and water diuresis. Am J Kidney Dis 67:507–511.  https://doi.org/10.1053/j.ajkd.2015.10.021 CrossRefPubMedGoogle Scholar
  53. 53.
    Lindner G, Kneidinger N, Holzinger U et al (2009) Tonicity balance in patients with hypernatremia acquired in the intensive care unit. Am J Kidney Dis 54:674–679.  https://doi.org/10.1053/j.ajkd.2009.04.015 CrossRefPubMedGoogle Scholar
  54. 54.
    Robertson GL (2016) Diabetes insipidus: differential diagnosis and management. Best Pract Res Clin Endocrinol Metab 30:205–218.  https://doi.org/10.1016/j.beem.2016.02.007 CrossRefPubMedGoogle Scholar
  55. 55.
    Fenske W, Refardt J, Chifu I et al (2018) A copeptin-based approach in the diagnosis of diabetes Insipidus. N Engl J Med 379:428–439.  https://doi.org/10.1056/NEJMoa1803760 CrossRefPubMedGoogle Scholar
  56. 56.
    Liamis G, Filippatos TD, Elisaf MS (2016) Evaluation and treatment of hypernatremia: a practical guide for physicians. Postgrad Med 128:299–306.  https://doi.org/10.1080/00325481.2016.1147322 CrossRefPubMedGoogle Scholar
  57. 57.
    Lobo DN (2003) Physiological aspects of fluid and electrolyte balance. http://eprints.nottingham.ac.uk/10150/. Zugegriffen: 2. März 2019Google Scholar
  58. 58.
    de Groot T, Sinke AP, Kortenoeven MLA et al (2016) Acetazolamide attenuates lithium-induced nephrogenic diabetes insipidus. J Am Soc Nephrol 27:2082–2091.  https://doi.org/10.1681/ASN.2015070796 CrossRefPubMedGoogle Scholar
  59. 59.
    Sinke AP, Kortenoeven MLA, de Groot T et al (2014) Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 306:F525–F533.  https://doi.org/10.1152/ajprenal.00617.2013 CrossRefPubMedGoogle Scholar
  60. 60.
    Kavanagh C, Uy NS (2019) Nephrogenic diabetes Insipidus. Pediatr Clin North Am 66:227–234.  https://doi.org/10.1016/j.pcl.2018.09.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Innere Medizin 1, Kardiologie, Nephrologie und IntensivmedizinLKH SteyrSteyrÖsterreich
  2. 2.Interdisziplinäres NotfallzentrumBürgerspital SolothurnSolothurnSchweiz

Personalised recommendations