Skip to main content

Advertisement

Log in

Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

2D graphene materials possess excellent electrical conductivity and an sp2 carbon atom structure and can be applied in light and electric energy storage and conversion applications. However, traditional methods of graphene preparation cannot keep pace with real-time synthesis, and therefore, novel graphene synthesis approaches have attracted increasing attention from researchers to accurately control graphene structure and morphology. Based on this, this review will discuss the novel synthesis of graphene for interdisciplinary applications of energy storage and conversion, which is a promising direction in the research for novel applications in photoelectrochemical cells, photo-assisted batteries, piezoelectric nanogenerators, photothermal and photomechanical devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 2016, Macmillan Publishers [147]

Fig. 6

Copyright 2016. ACS [153]

Fig. 7

Copyright 2012, Elsevier [194]

Fig. 8

Copyright 2017, RSC [222]

Fig. 9

Copyright 2018, RSC [225]

Fig. 10

Copyright 2014, RSC [209], Copyright 2014, Elsevier [242]

Fig. 11
Fig. 12

Copyright 2015, Wiley-VCH [279]

Fig. 13

Similar content being viewed by others

References

  1. Askeland, D.R., Wright, W.J.: The Science and Engineering of Materials. Cengage Learing, Boston (2015)

    Google Scholar 

  2. Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE. 86, 82–85 (1998)

    Article  Google Scholar 

  3. Wu, Z., Chen, Z., Du, X., et al.: Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Sun, Y.P., Zhou, B., Lin, Y., et al.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  5. Cano, Z.P., Banham, D., Ye, S., et al.: Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  6. Schmuch, R., Wagner, R., Hörpel, G., et al.: Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  7. Sun, L., Wang, D., Luo, Y., et al.: Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 10, 1300–1308 (2015)

    Article  PubMed  CAS  Google Scholar 

  8. Sun, L., Kong, W., Jiang, Y., et al.: Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J. Mater. Chem. A 3, 5305–5312 (2015)

    Article  CAS  Google Scholar 

  9. Sun, L., Li, M., Jiang, Y., et al.: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 14, 4044–4049 (2014). https://doi.org/10.1021/nl501486n

    Article  CAS  PubMed  Google Scholar 

  10. Tan, G., Xu, R., Xing, Z., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 17090 (2017)

    Article  CAS  Google Scholar 

  11. Yu, X., Du, R., Li, B., et al.: Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B-Environ. 182, 504–512 (2016). https://doi.org/10.1016/j.apcatb.2015.09.003

    Article  CAS  Google Scholar 

  12. Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-sssisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008). https://doi.org/10.1021/nn800251f

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H., Zhang, Y., Ma, H., et al.: Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and multistage signal amplification strategy. Biosens. Bioelectron. 86, 907–912 (2016). https://doi.org/10.1016/j.bios.2016.07.098

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, M., Zhai, Y., Dong, S.: Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603–5613 (2009). https://doi.org/10.1021/ac900136z

    Article  CAS  PubMed  Google Scholar 

  15. Tong, W., Zhang, Y., Zhang, Q., et al.: Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 94, 590–598 (2015). https://doi.org/10.1016/j.carbon.2015.07.005

    Article  CAS  Google Scholar 

  16. Shang, J., Zhang, Y., Yu, L., et al.: Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. J. Mater. Chem. A 1, 884–890 (2013)

    Article  CAS  Google Scholar 

  17. Huang, T., An, Q., Luan, X., et al.: Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds. Nanoscale 8, 2003–2010 (2016). https://doi.org/10.1039/C5NR08129G

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, J.T., Tabakman, S.M., Liang, Y., et al.: Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). https://doi.org/10.1021/ja2010175

    Article  CAS  PubMed  Google Scholar 

  19. Yu, L., Zhang, Y.H., Shang, J., et al.: Electrical and dielectric properties of exfoliated graphite/polyimide composite films with low percolation threshold. J. Electron. Mater. 41, 2439–2446 (2012). https://doi.org/10.1007/s11664-012-2163-x

    Article  CAS  Google Scholar 

  20. Weng, X., Li, H., Song, S., et al.: Reducing the entrainment of gangue fines in low grade microcrystalline graphite ore flotation using multi-stage grinding-flotation process. Minerals 7, 38 (2017)

    Article  CAS  Google Scholar 

  21. Shang, J., Zhang, Y., Zhou, F., et al.: Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production. J. Hazard Mater. 198, 65–69 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Du, H., Zhao, C.X., Lin, J., et al.: Carbon nanomaterials in direct liquid fuel cells. Chem. Rec. 18, 1365–1372 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. Yu, H., Yang, L., Cheng, D., et al.: Zeolitic-imidazolate framework (ZIF)@ZnCo-ZIF core-shell template-derived Co, N-doped carbon catalysts for oxygen reduction reaction. Eng. Sci. pp. 54–61 (2018). https://doi.org/10.30919/es8d729

  24. Wang, L., Qiu, H., Liang, C., et al.: Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141, 506–514 (2019). https://doi.org/10.1016/j.carbon.2018.10.003

    Article  CAS  Google Scholar 

  25. Dong, M., Li, Q., Liu, H., et al.: Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer 158, 381–390 (2018). https://doi.org/10.1016/j.polymer.2018.11.003

    Article  CAS  Google Scholar 

  26. Wang, C., Murugadoss, V., Kong, J., et al.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006

    Article  CAS  Google Scholar 

  27. Cheng, C., Fan, R., Ren, Y., et al.: Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, Z.Y., Misra, R.D.K., Bai, P.K., et al.: Novel process of coating Al on graphene involving organic aluminum accompanying microstructure evolution. Mater. Lett. 232, 202–205 (2018)

    Article  CAS  Google Scholar 

  29. Hu, C., Li, Z., Wang, Y., et al.: Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J. Mater. Chem. C 5, 2318–2328 (2017)

    Article  CAS  Google Scholar 

  30. Zheng, Z., Chen, J., Wang, Y., et al.: Highly confined and tunable hyperbolic phonon polaritons in Van Der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1–9 (2018). https://doi.org/10.1002/adma.201705318

    Article  CAS  Google Scholar 

  31. Wang, Z., Wei, R., Gu, J., et al.: Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014

    Article  CAS  Google Scholar 

  32. Wu, N., Liu, C., Xu, D., et al.: Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6, 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097

    Article  CAS  Google Scholar 

  33. Dai, L., Xue, Y., Qu, L., et al.: Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y., Qian, L., Zhao, W., et al.: Highly efficient Fe-NC nanoparticles modified porous graphene composites for oxygen reduction reaction. J. Electrochem. Soc. 165, H510–H516 (2018)

    Article  CAS  Google Scholar 

  35. Li, Y., Zhou, B., Zheng, G., et al.: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6, 2258–2269 (2018). https://doi.org/10.1039/C7TC04959E

    Article  CAS  Google Scholar 

  36. Pan, F., Xiang, X., Li, Y.: Nitrogen coordinated single atomic metals supported on nanocarbons: a new frontier in electrocatalytic CO2 reduction. Eng. Sci. 1, 21–32 (2018). https://doi.org/10.30919/es.1804232

    Article  Google Scholar 

  37. Song, B., Wang, T., Sun, H., et al.: Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769–15777 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Yin, J., Cao, Y., Li, Y.H., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017). https://doi.org/10.1126/science.aan3211

    Article  CAS  PubMed  Google Scholar 

  39. Ladd, T.D., Jelezko, F., Laflamme, R., et al.: Quantum computers. Nature 464, 45–53 (2010). https://doi.org/10.1038/nature08812

    Article  CAS  PubMed  Google Scholar 

  40. Chang, C.Z., Zhang, J., Feng, X., et al.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). https://doi.org/10.1126/science.1234414

    Article  CAS  PubMed  Google Scholar 

  41. Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., et al.: Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008). https://doi.org/10.1126/science.1154663

    Article  CAS  PubMed  Google Scholar 

  42. Silvestrov, P.G., Efetov, K.B.: Quantum dots in graphene. Phys. Rev. Lett. 98, 16802 (2007). https://doi.org/10.1103/PhysRevLett.98.016802

    Article  CAS  Google Scholar 

  43. Peng, J., Li, S.S.: Band structures of graphene hexagonal lattice semiconductor quantum dots. Appl. Phys. Lett. 97, 242105 (2010). https://doi.org/10.1063/1.3526724

    Article  CAS  Google Scholar 

  44. Luo, Q., Ma, H., Hou, Q., et al.: All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28, 1706777 (2018)

    Article  CAS  Google Scholar 

  45. Liu, T., Yu, K., Gao, L., et al.: A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A 5, 17848–17855 (2017)

    Article  CAS  Google Scholar 

  46. Park, J., Moon, J., Kim, C., et al.: Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Mater. 8, e272 (2016). https://doi.org/10.1038/am.2016.61

    Article  CAS  Google Scholar 

  47. Lee, K., Lee, H., Shin, Y., et al.: Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 26, 746–754 (2016). https://doi.org/10.1016/j.nanoen.2016.06.030

    Article  CAS  Google Scholar 

  48. Liu, W.W., Feng, Y.Q., Yan, X.B., et al.: Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013). https://doi.org/10.1002/adfm.201203771

    Article  CAS  Google Scholar 

  49. Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., et al.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648

    Article  CAS  PubMed  Google Scholar 

  50. Shen, J., Zhu, Y., Yang, X., et al.: Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012). https://doi.org/10.1039/c2cc00110a

    Article  CAS  Google Scholar 

  51. Xu, Z., Gao, C.: Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583

    Article  CAS  PubMed  Google Scholar 

  52. Xu, Z., Gao, C.: Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011). https://doi.org/10.1021/nn200069w

    Article  CAS  PubMed  Google Scholar 

  53. Xu, Z., Sun, H., Zhao, X., et al.: Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 188–193 (2013). https://doi.org/10.1002/adma.201203448

    Article  CAS  PubMed  Google Scholar 

  54. Wang, S., Wu, Z.S., Zheng, S., et al.: Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 11, 4283–4291 (2017). https://doi.org/10.1021/acsnano.7b01390

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, H., Dong, Z., Hu, C., et al.: Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013). https://doi.org/10.1039/c3nr00320e

    Article  CAS  PubMed  Google Scholar 

  56. Talapatra, S., Kar, S., Pal, S.K., et al.: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112–116 (2006). https://doi.org/10.1038/nnano.2006.56

    Article  CAS  PubMed  Google Scholar 

  57. Xiao, X., Liu, P., Wang, J.S., et al.: Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209–212 (2011). https://doi.org/10.1016/j.elecom.2010.12.016

    Article  CAS  Google Scholar 

  58. Kong, D., Wang, H., Cha, J.J., et al.: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). https://doi.org/10.1021/nl400258t

    Article  CAS  PubMed  Google Scholar 

  59. Wang, H., Gao, E., Liu, P., et al.: Facile growth of vertically-aligned graphene nanosheets via thermal CVD: The experimental and theoretical investigations. Carbon 121, 1–9 (2017). https://doi.org/10.1016/j.carbon.2017.05.074

    Article  CAS  Google Scholar 

  60. Bo, Z., Wen, Z., Kim, H., et al.: One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50, 4379–4387 (2012). https://doi.org/10.1016/j.carbon.2012.05.014

    Article  CAS  Google Scholar 

  61. Yang, H., Yang, J., Bo, Z., et al.: Edge effects in vertically-oriented graphene based electric double-layer capacitors. J. Power Sources 324, 309–316 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.072

    Article  CAS  Google Scholar 

  62. Zhu, M.Y., Outlaw, R.A., Bagge-Hansen, M., et al.: Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD. Carbon 49, 2526–2531 (2011). https://doi.org/10.1016/j.carbon.2011.02.024

    Article  CAS  Google Scholar 

  63. Shiji, K., Hiramatsu, M., Enomoto, A., et al.: Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 14, 831–834 (2005). https://doi.org/10.1016/j.diamond.2004.10.021

    Article  CAS  Google Scholar 

  64. Bo, Z., Yang, Y., Chen, J., et al.: Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5, 5180–5204 (2013). https://doi.org/10.1039/c3nr33449j

    Article  CAS  PubMed  Google Scholar 

  65. Hu, L., Peng, X., Li, Y., et al.: Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34, 515–523 (2017)

    Article  CAS  Google Scholar 

  66. Kim, K.S., Zhao, Y., Jang, H., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  67. Bae, S., Kim, H., Lee, Y., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  68. El-Kady, M.F., Strong, V., Dubin, S., et al.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744

    Article  CAS  PubMed  Google Scholar 

  69. Li, X., Cai, W., An, J., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  PubMed  Google Scholar 

  70. Dikin, D.A., Stankovich, S., Zimney, E.J., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016

    Article  CAS  PubMed  Google Scholar 

  71. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). https://doi.org/10.1126/science.1167130

    Article  CAS  PubMed  Google Scholar 

  72. Hwang, E.H., Das Sarma, S.: Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007)

    Article  CAS  Google Scholar 

  73. Li, G., Li, Y., Liu, H., et al.: Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010). https://doi.org/10.1039/b922733d

    Article  CAS  Google Scholar 

  74. Pan, L.D., Zhang, L.Z., Song, B.Q., et al.: Graphyne- and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011). https://doi.org/10.1063/1.3583507

    Article  CAS  Google Scholar 

  75. He, J., Wang, N., Cui, Z., et al.: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017). https://doi.org/10.1038/s41467-017-01202-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, H., Chen, C., Liu, Y., et al.: High-quality graphene microflower design for high-performance Li–S and Al-ion batteries. Adv. Energy Mater. 7, 1700051 (2017). https://doi.org/10.1002/aenm.201700051

    Article  CAS  Google Scholar 

  77. Chang, L., Wei, W., Sun, K., et al.: 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density. J. Mater. Chem. A 3, 10183–10187 (2015). https://doi.org/10.1039/c5ta01055a

    Article  CAS  Google Scholar 

  78. Wang, S., Wang, G., Zhang, X., et al.: Novel flower-like graphene foam directly grown on a nickel template by chemical vapor deposition. Carbon 120, 103–110 (2017). https://doi.org/10.1016/j.carbon.2017.04.010

    Article  CAS  Google Scholar 

  79. Chen, C., Xu, Z., Han, Y., et al.: Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces 8, 8000–8007 (2016). https://doi.org/10.1021/acsami.6b00126

    Article  CAS  PubMed  Google Scholar 

  80. Wang, H., Sun, K., Tao, F., et al.: 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013). https://doi.org/10.1002/anie.201303497

    Article  CAS  Google Scholar 

  81. Wei, W., Sun, K., Hu, Y.H.: Synthesis of 3D cauliflower-fungus-like graphene from CO2 as a highly efficient counter electrode material for dye-sensitized solar cells. J. Mater. Chem. A 2, 16842–16846 (2014). https://doi.org/10.1039/c4ta03909b

    Article  CAS  Google Scholar 

  82. Zhang, J., Xiao, J., Meng, X., et al.: Free folding of suspended graphene sheets by random mechanical stimulation. Phys. Rev. Lett. 104, 166805 (2010). https://doi.org/10.1103/PhysRevLett.104.166805

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014). https://doi.org/10.1021/nn500025t

    Article  CAS  PubMed  Google Scholar 

  84. Patra, N., Wang, B., Král, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009). https://doi.org/10.1021/nl9019616

    Article  CAS  PubMed  Google Scholar 

  85. Xu, W., Qin, Z., Chen, C.T., et al.: Ultrathin thermoresponsive self-folding 3D graphene. Sci. Adv. 3, e1701084 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hu, H., Zhao, Z., Wan, W., et al.: Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013). https://doi.org/10.1002/adma.201204530

    Article  CAS  PubMed  Google Scholar 

  87. Blanazs, A., Verber, R., Mykhaylyk, O.O., et al.: Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc. 134, 9741–9748 (2012). https://doi.org/10.1021/ja3024059

    Article  CAS  PubMed  Google Scholar 

  88. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002). https://doi.org/10.1021/cr0101306

    Article  CAS  PubMed  Google Scholar 

  89. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  90. Qiu, L., Liu, J.Z., Chang, S.L., et al.: Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251

    Article  CAS  PubMed  Google Scholar 

  91. Tang, G., Jiang, Z.G., Li, X., et al.: Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014). https://doi.org/10.1016/j.carbon.2014.05.063

    Article  CAS  Google Scholar 

  92. Chen, L., Wei, B., Zhang, X., et al.: Bifunctional graphene/gamma-Fe2O3 hybrid aerogels with double nanocrystalline networks for enzyme immobilization. Small 9, 2331–2340 (2013). https://doi.org/10.1002/smll.201202923

    Article  CAS  PubMed  Google Scholar 

  93. Hou, Y., Zhang, B., Wen, Z., et al.: A 3D hybrid of layered MoS2/nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. J. Mater. Chem. A 2, 13795–13800 (2014). https://doi.org/10.1039/c4ta02254h

    Article  CAS  Google Scholar 

  94. Cheng, W.Y., Wang, C.C., Lu, S.Y.: Graphene aerogels as a highly efficient counter electrode material for dye-sensitized solar cells. Carbon 54, 291–299 (2013). https://doi.org/10.1016/j.carbon.2012.11.041

    Article  CAS  Google Scholar 

  95. Luo, Y., Jiang, J., Zhou, W., et al.: Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 22, 8634–8640 (2012). https://doi.org/10.1039/c2jm16419a

    Article  CAS  Google Scholar 

  96. Chen, Z., Ren, W., Gao, L., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011). https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  97. Niu, Z., Chen, J., Hng, H.H., et al.: A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 24, 4144–4150 (2012). https://doi.org/10.1002/adma.201200197

    Article  CAS  PubMed  Google Scholar 

  98. Yavari, F., Chen, Z., Thomas, A.V., et al.: High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011). https://doi.org/10.1038/srep00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  100. Chen, J., Yao, B., Li, C., et al.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  101. Botas, C., Álvarez, P., Blanco, P., et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013). https://doi.org/10.1016/j.carbon.2013.08.009

    Article  CAS  Google Scholar 

  102. Moo, J.G.S., Khezri, B., Webster, R.D., et al.: Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods: dramatic influences on heavy-metal-ion adsorption. ChemPhysChem 15, 2922–2929 (2014). https://doi.org/10.1002/cphc.201402279

    Article  CAS  PubMed  Google Scholar 

  103. Peng, L., Xu, Z., Liu, Z., et al.: An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 6, 5716 (2015)

    Article  CAS  PubMed  Google Scholar 

  104. Xu, Y., Liu, J.: Graphene as transparent electrodes: fabrication and new emerging applications. Small 12, 1400–1419 (2016)

    Article  CAS  PubMed  Google Scholar 

  105. Hu, X., Yu, Y., Wang, Y., et al.: Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Appl. Surf. Sci. 329, 83–86 (2015). https://doi.org/10.1016/j.apsusc.2014.12.110

    Article  CAS  Google Scholar 

  106. Chen, J., Li, Y., Huang, L., et al.: High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826–834 (2015). https://doi.org/10.1016/j.carbon.2014.10.033

    Article  CAS  Google Scholar 

  107. Cao, C., Daly, M., Chen, B., et al.: Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture. Nano Lett. 15, 6528–6534 (2015). https://doi.org/10.1021/acs.nanolett.5b02173

    Article  CAS  PubMed  Google Scholar 

  108. Thebo, K.H., Qian, X., Zhang, Q., et al.: Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wu, M., Chen, J., Wen, Y., et al.: Chemical approach to ultrastiff, strong, and environmentally stable graphene films. ACS Appl. Mater. Interfaces 10, 5812–5818 (2018). https://doi.org/10.1021/acsami.7b18459

    Article  CAS  PubMed  Google Scholar 

  110. Shang, L., Bian, T., Zhang, B., et al.: Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 126, 254–258 (2014)

    Article  Google Scholar 

  111. Zhang, Z., Sun, J., Lai, C., et al.: High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120, 411–418 (2017)

    Article  CAS  Google Scholar 

  112. Dano, C., Simonet, J.: Cathodic reactivity of graphite with carbon dioxide: an efficient formation of carboxylated carbon materials. J. Electroanal. Chem. 564, 115–121 (2004). https://doi.org/10.1016/j.jelechem.2003.10.012

    Article  CAS  Google Scholar 

  113. Jeon, I.Y., Shin, Y.R., Sohn, G.J., et al.: Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. 109, 5588–5593 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao, W., Fang, M., Wu, F., et al.: Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20, 5817–5819 (2010). https://doi.org/10.1039/C0JM01354D

    Article  CAS  Google Scholar 

  115. Lin, C., Yang, L., Ouyang, L., et al.: A new method for few-layer graphene preparation via plasma-assisted ball milling. J. Alloy Compd. 728, 578–584 (2017)

    Article  CAS  Google Scholar 

  116. Buzaglo, M., Bar, I.P., Varenik, M., et al.: Graphite-to-graphene: total conversion. Adv. Mater. 29, 1603528 (2017)

    Article  CAS  Google Scholar 

  117. Leon, V., Quintana, M., Herrero, M.A., et al.: Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 47, 10936–10938 (2011)

    Article  CAS  Google Scholar 

  118. Xu, J., Xu, F., Qian, M., et al.: Conductive carbon nitride for excellent energy storage. Adv. Mater. 29, 1–8 (2017). https://doi.org/10.1002/adma.201701674

    Article  CAS  Google Scholar 

  119. Rojac, T., Kosec, M., Malič, B., et al.: The application of a milling map in the mechanochemical synthesis of ceramic oxides. J. Eur. Ceram. Soc. 26, 3711–3716 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.11.013

    Article  CAS  Google Scholar 

  120. Wang, X.Y., Narita, A., Müllen, K.: Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2, 100 (2017). https://doi.org/10.1038/s41570-017-0100

    Article  CAS  Google Scholar 

  121. Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014). https://doi.org/10.1038/nnano.2014.229

    Article  CAS  PubMed  Google Scholar 

  122. Keeley, G.P., O’Neill, A., McEvoy, N., et al.: Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 20, 7864–7869 (2010). https://doi.org/10.1039/C0JM01527J

    Article  CAS  Google Scholar 

  123. Dong, L., Chen, Z., Zhao, X., et al.: A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat. Commun. 9, 76 (2018). https://doi.org/10.1038/s41467-017-02580-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kamyshny, A., Magdassi, S.: Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014). https://doi.org/10.1002/smll.201303000

    Article  CAS  PubMed  Google Scholar 

  125. Fu, K., Wang, Y., Yan, C., et al.: Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016). https://doi.org/10.1002/adma.201505391

    Article  CAS  PubMed  Google Scholar 

  126. Karagiannidis, P.G., Hodge, S.A., Lombardi, L., et al.: Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742–2755 (2017). https://doi.org/10.1021/acsnano.6b07735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Naficy, S., Jalili, R., Aboutalebi, S.H., et al.: Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 1, 326–331 (2014)

    Article  CAS  Google Scholar 

  128. Lu, L., Zhu, Y., Shi, C., et al.: Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 109, 373–383 (2016). https://doi.org/10.1016/j.carbon.2016.08.023

    Article  CAS  Google Scholar 

  129. Su, C.Y., Lu, A.Y., Xu, Y., et al.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011). https://doi.org/10.1021/nn200025p

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J., Cui, Y., Wang, X., et al.: Fabrication of hierarchical porous cobalt manganese spinel graphene hybrid nanoplates for electrochemical supercapacitors. Electrochim. Acta 188, 704–709 (2016). https://doi.org/10.1016/j.electacta.2015.12.052

    Article  CAS  Google Scholar 

  131. Busch, S., Dolhaine, H., DuChesne, A., et al.: Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur. J. Inorg. Chem. 1999, 1643–1653 (1999)

    Article  Google Scholar 

  132. Liu, A., Zhao, L., Zhang, J., et al.: Solvent-assisted oxygen incorporation of vertically aligned mos2 ultrathin nanosheets decorated on reduced graphene oxide for improved electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 8, 25210–25218 (2016). https://doi.org/10.1021/acsami.6b06031

    Article  CAS  PubMed  Google Scholar 

  133. Wei, P., Shen, J., Wu, K., et al.: Tuning electrochemical behaviors of N-methyl-2-pyrrolidone liquid exfoliated graphene nanosheets by centrifugal speed-based grading. Carbon 129, 183–190 (2018). https://doi.org/10.1016/j.carbon.2017.11.100

    Article  CAS  Google Scholar 

  134. Sarkar, S., Gandla, D., Venkatesh, Y., et al.: Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys. Chem. Chem. Phys. 18, 21278–21287 (2016). https://doi.org/10.1039/C6CP01528J

    Article  CAS  PubMed  Google Scholar 

  135. Ayán-Varela, M., Paredes, J.I., Guardia, L., et al.: Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Appl. Mater. Interfaces 7, 10293–10307 (2015). https://doi.org/10.1021/acsami.5b00910

    Article  CAS  PubMed  Google Scholar 

  136. Marchezi, P.E., Sonai, G.G., Hirata, M.K., et al.: Understanding the role of reduced graphene oxide in the electrolyte of dye-sensitized solar cells. J. Phys. Chem. C 120, 23368–23376 (2016). https://doi.org/10.1021/acs.jpcc.6b07319

    Article  CAS  Google Scholar 

  137. Guo, W., Jing, F., Xiao, J., et al.: Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv. Mater. 28, 3152–3158 (2016). https://doi.org/10.1002/adma.201503705

    Article  CAS  PubMed  Google Scholar 

  138. Banszerus, L., Schmitz, M., Engels, S., et al.: Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 16, 1387–1391 (2016). https://doi.org/10.1021/acs.nanolett.5b04840

    Article  CAS  PubMed  Google Scholar 

  139. Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., et al.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). https://www.nature.com/articles/nature09718#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  140. Cabrero-Vilatela, A., Weatherup, R.S., Braeuninger-Weimer, P., et al.: Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8, 2149–2158 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kraus, J., Böbel, M., Günther, S.: Suppressing graphene nucleation during CVD on polycrystalline Cu by controlling the carbon content of the support foils. Carbon 96, 153–165 (2016). https://doi.org/10.1016/j.carbon.2015.09.048

    Article  CAS  Google Scholar 

  142. Yan, Z., Lin, J., Peng, Z., et al.: Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6, 9110–9117 (2012). https://doi.org/10.1021/nn303352k

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013). https://doi.org/10.1021/ar300203n

    Article  CAS  PubMed  Google Scholar 

  144. Mattevi, C., Kim, H., Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2011). https://doi.org/10.1039/C0JM02126A

    Article  CAS  Google Scholar 

  145. Wang, H., Yu, G.: Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 28, 4956–4975 (2016). https://doi.org/10.1002/adma.201505123

    Article  CAS  PubMed  Google Scholar 

  146. Xu, X., Zhang, Z., Qiu, L., et al.: Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 11, 930 (2016)

    Article  CAS  PubMed  Google Scholar 

  147. Hao, Y., Wang, L., Liu, Y., et al.: Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016)

    Article  CAS  PubMed  Google Scholar 

  148. Braeuninger-Weimer, P., Brennan, B., Pollard, A.J., et al.: Understanding and controlling Cu-catalyzed graphene nucleation: the role of impurities, roughness, and oxygen scavenging. Chem. Mater. 28, 8905–8915 (2016). https://doi.org/10.1021/acs.chemmater.6b03241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Carley, A.F., Chinn, M., Parkinson, C.R.: The adsorption and oxidation of cyanogen on copper surfaces. Surf. Sci. 537, 64–74 (2003)

    Article  CAS  Google Scholar 

  150. Huet, B., Raskin, J.P.: Role of Cu foil in situ annealing in controlling the size and thickness of CVD graphene domains. Carbon 129, 270–280 (2018). https://doi.org/10.1016/j.carbon.2017.12.043

    Article  CAS  Google Scholar 

  151. Xia, K., Wang, C., Jian, M., et al.: CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018). https://doi.org/10.1007/s12274-017-1731-z

    Article  CAS  Google Scholar 

  152. Tang, C., Li, B., Zhang, Q., et al.: CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2015). https://doi.org/10.1002/adfm.201503726

    Article  CAS  Google Scholar 

  153. Shi, L., Chen, K., Du, R., et al.: Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil–water separation. J. Am. Chem. Soc. 138, 6360–6363 (2016). https://doi.org/10.1021/jacs.6b02262

    Article  CAS  PubMed  Google Scholar 

  154. Yu, Q., Lian, J., Siriponglert, S., et al.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008). https://doi.org/10.1063/1.2982585

    Article  CAS  Google Scholar 

  155. Tan, H., Fan, Y., Zhou, Y., et al.: Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866–7873 (2016). https://doi.org/10.1021/acsnano.6b03722

    Article  CAS  PubMed  Google Scholar 

  156. Liang, X., Sperling, B.A., Calizo, I., et al.: Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011)

    Article  PubMed  CAS  Google Scholar 

  157. Shin, J.H., Kim, S.H., Kwon, S.S., et al.: Direct CVD growth of graphene on three-dimensionally-shaped dielectric substrates. Carbon 129, 785–789 (2018). https://doi.org/10.1016/j.carbon.2017.12.097

    Article  CAS  Google Scholar 

  158. Kessler, F., Muñoz, P.A.R., Phelan, C., et al.: Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Appl. Surf. Sci. 440, 55–60 (2018). https://doi.org/10.1016/j.apsusc.2018.01.142

    Article  CAS  Google Scholar 

  159. Wang, Y., Zheng, Y., Xu, X., et al.: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011). https://doi.org/10.1021/nn203700w

    Article  CAS  PubMed  Google Scholar 

  160. Cherian Christie, T., Giustiniano, F., Martin-Fernandez, I., et al.: ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small 11, 189–194 (2015). https://doi.org/10.1002/smll.201402024

    Article  CAS  PubMed  Google Scholar 

  161. Grimm, S., Schweiger, M., Eigler, S., et al.: High-quality reduced graphene oxide by CVD-assisted annealing. J. Phys. Chem. C 120, 3036–3041 (2016). https://doi.org/10.1021/acs.jpcc.5b11598

    Article  CAS  Google Scholar 

  162. Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2008)

    Article  PubMed  CAS  Google Scholar 

  163. Narita, A., Feng, X., Hernandez, Y., et al.: Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2013)

    Article  PubMed  CAS  Google Scholar 

  164. Jiao, L., Zhang, L., Wang, X., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  CAS  PubMed  Google Scholar 

  165. Li, W., Zhu, Y.M., Wang, G., et al.: Characterization of coalification jumps during high rank coal chemical structure evolution. Fuel 185, 298–304 (2016). https://doi.org/10.1016/j.fuel.2016.07.121

    Article  CAS  Google Scholar 

  166. Zhou, Q., Zhao, Z., Zhang, Y., et al.: Graphene sheets from graphitized anthracite coal: preparation, decoration, and application. Energy Fuels 26, 5186–5192 (2012). https://doi.org/10.1021/ef300919d

    Article  CAS  Google Scholar 

  167. Ye, R., Xiang, C., Lin, J., et al.: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). https://doi.org/10.1038/ncomms3943

    Article  CAS  PubMed  Google Scholar 

  168. Ye, R., Peng, Z., Metzger, A., et al.: Bandgap engineering of coal-derived graphene quantum dots. ACS Appl. Mater. Interfaces 7, 7041–7048 (2015). https://doi.org/10.1021/acsami.5b01419

    Article  CAS  PubMed  Google Scholar 

  169. Dong, Y., Lin, J., Chen, Y., et al.: Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6, 7410–7415 (2014). https://doi.org/10.1039/C4NR01482K

    Article  CAS  PubMed  Google Scholar 

  170. Vlassiouk, I.V., Stehle, Y., Pudasaini, P.R, et al.: Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. (2018). https://doi.org/10.1038/s41563-018-0019-3

    Article  PubMed  Google Scholar 

  171. Ivleva, L.I., Voronina, I.S., Berezovskaya, L.Y., et al.: Growth and properties of ZnMoO4 single crystals. Crystallogr. Rep. 53, 1087–1090 (2008)

    Article  CAS  Google Scholar 

  172. Tang, Y., Peng, P., Wang, S., et al.: Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper. Chem. Mater. 29, 8404–8411 (2017). https://doi.org/10.1021/acs.chemmater.7b02958

    Article  CAS  Google Scholar 

  173. Ye, M., Zhang, Z., Zhao, Y., et al.: Graphene platforms for smart energy generation and storage. Joule 2, 245–268 (2018). https://doi.org/10.1016/j.joule.2017.11.011

    Article  CAS  Google Scholar 

  174. Li, D., Müller, M.B., Gilje, S., et al.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  PubMed  Google Scholar 

  175. Pei, S., Wei, Q., Huang, K., et al.: Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 9, 145 (2018). https://doi.org/10.1038/s41467-017-02479-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Guo, H.L., Wang, X.F., Qian, Q.Y., et al.: A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009). https://doi.org/10.1021/nn900227d

    Article  CAS  PubMed  Google Scholar 

  177. Boland, C.S., Khan, U., Binions, M., et al.: Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 10, 5366–5375 (2018). https://doi.org/10.1039/C7NR09247D

    Article  CAS  PubMed  Google Scholar 

  178. Xiao, J., Zhang, J., Lv, W., et al.: Multifunctional graphene/poly(vinyl alcohol) aerogels: in situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon 123, 354–363 (2017). https://doi.org/10.1016/j.carbon.2017.07.049

    Article  CAS  Google Scholar 

  179. Xiao, J., Lv, W., Xie, Z., et al.: Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via ππ interactions. J. Mater. Chem. A 4, 12126–12135 (2016)

    Article  CAS  Google Scholar 

  180. Li, C., Jiang, D., Liang, H., et al.: Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications. Adv. Funct. Mater. 28, 1704674 (2018). https://doi.org/10.1002/adfm.201704674

    Article  CAS  Google Scholar 

  181. Chen, C., Xi, J., Zhou, E., et al.: Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2017). https://doi.org/10.1007/s40820-017-0179-8

    Article  CAS  Google Scholar 

  182. Kim, K.K., Hsu, A., Jia, X., et al.: Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012). https://doi.org/10.1021/nn301675f

    Article  CAS  PubMed  Google Scholar 

  183. Wu, C., Huang, X., Wang, G., et al.: Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J. Mater. Chem. 22, 7010–7019 (2012). https://doi.org/10.1039/C2JM16901K

    Article  CAS  Google Scholar 

  184. Sabri, S.S., Lévesque, P.L., Aguirre, C.M., et al.: Graphene field effect transistors with parylene gate dielectric. Appl. Phys. Lett. 95, 242104 (2009). https://doi.org/10.1063/1.3273396

    Article  CAS  Google Scholar 

  185. Yang, K., Huang, X., Fang, L., et al.: Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6, 14740–14753 (2014). https://doi.org/10.1039/c4nr03957b

    Article  CAS  PubMed  Google Scholar 

  186. Yousefi, N., Sun, X., Lin, X., et al.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293

    Article  CAS  PubMed  Google Scholar 

  187. Wu, C., Huang, X., Wu, X., et al.: Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013). https://doi.org/10.1039/C3NR00625E

    Article  CAS  PubMed  Google Scholar 

  188. Wang, D., Zhang, X., Zha, J.W., et al.: Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013). https://doi.org/10.1016/j.polymer.2013.02.012

    Article  CAS  Google Scholar 

  189. Jonscher, A.K.: Physical basis of dielectric loss. Nature 253, 717–719 (1975). https://doi.org/10.1038/253717a0

    Article  CAS  Google Scholar 

  190. Wang, Q., Zhu, L.: Polymer nanocomposites for electrical energy storage. J. Polym. Sci. Polym. Phys. 49, 1421–1429 (2011). https://doi.org/10.1002/polb.22337

    Article  CAS  Google Scholar 

  191. Bergman, D.J., Imry, Y.: Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material. Phys. Rev. Lett. 39, 1222–1225 (1977). https://doi.org/10.1103/PhysRevLett.39.1222

    Article  Google Scholar 

  192. Lv, K., Zhang, Y., Zhang, D., et al.: Mn3O4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries. J. Mater. Sci-Mater. Electron. 28, 14919–14927 (2017). https://doi.org/10.1007/s10854-017-7413-5

    Article  CAS  Google Scholar 

  193. Phillips, J.C., Thorpe, M.F.: Constraint theory, vector percolation and glass formation. Solid State Commun. 53, 699–702 (1985). https://doi.org/10.1016/0038-1098(85)90381-3

    Article  CAS  Google Scholar 

  194. Shang, J., Zhang, Y., Yu, L., et al.: Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater. Chem. Phys. 134, 867–874 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.082

    Article  CAS  Google Scholar 

  195. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  196. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  197. Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013). https://doi.org/10.1039/C3EE23870A

    Article  CAS  Google Scholar 

  198. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008). https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  199. Slater, M.D., Kim, D., Lee, E., et al.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013). https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  200. Jayaprakash, N., Das, S.K., Archer, L.A.: The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612 (2011). https://doi.org/10.1039/C1CC15779E

    Article  CAS  Google Scholar 

  201. Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000). https://doi.org/10.1038/35037553

    Article  CAS  PubMed  Google Scholar 

  202. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  203. Bard, A.J., Faulkner, L.R., Leddy, J., et al.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (1980)

    Google Scholar 

  204. Subramanian, V., Luo, C., Stephan, A.M., et al.: Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007). https://doi.org/10.1021/jp067009t

    Article  CAS  Google Scholar 

  205. Kaempgen, M., Chan, C.K., Ma, J., et al.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009). https://doi.org/10.1021/nl8038579

    Article  CAS  PubMed  Google Scholar 

  206. Eftekhari, A. (ed.): Nanostructured Materials in Electrochemistry. Wiley, New York (2008)

    Google Scholar 

  207. Zhang, D., Zhang, Y., Luo, Y., et al.: Highly porous honeycomb manganese oxide@carbon fibers core-shell nanocables for flexible supercapacitors. Nano Energy 13, 47–57 (2015). https://doi.org/10.1016/j.nanoen.2015.01.047

    Article  CAS  Google Scholar 

  208. Zhang, D., Zhang, Y., Luo, Y., et al.: High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Res. 11, 1651–1663 (2018). https://doi.org/10.1007/s12274-017-1780-3

    Article  CAS  Google Scholar 

  209. Salunkhe, R.R., Lin, J., Malgras, V., et al.: Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11, 211–218 (2015). https://doi.org/10.1016/j.nanoen.2014.09.030

    Article  CAS  Google Scholar 

  210. Li, X., Zhao, W., Yin, R., et al.: A highly porous polyaniline-graphene composite used for electrochemical supercapacitors. Eng. Sci. 3, 89–95 (2018). https://doi.org/10.30919/es8d743

    Article  Google Scholar 

  211. Ma, L., Liu, R., Liu, L., et al.: Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. J. Power Sources 335, 76–83 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.006

    Article  CAS  Google Scholar 

  212. Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  213. Zhang, Y., Sun, L., Lv, K., et al.: One-pot synthesis of Ni(OH)2 flakes embeded in highly-conductive carbon nanotube/graphene hybrid framework as high performance electrodes for supercapacitors. Mater. Lett. 213, 131–134 (2018). https://doi.org/10.1016/j.matlet.2017.10.129

    Article  CAS  Google Scholar 

  214. Wu, J.Z., Li, X.Y., Zhu, Y.R., et al.: Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceram. Int. 42, 9250–9256 (2016). https://doi.org/10.1016/j.ceramint.2016.03.027

    Article  CAS  Google Scholar 

  215. Si, H., Sun, L., Zhang, Y., et al.: Carbon-coated MoO2 nanoclusters anchored on symmetric supercapacitors. Dalton T. pp. 285–295 (2019). https://doi.org/10.1039/c8dt03665a

    Article  CAS  Google Scholar 

  216. Bai, L., Zhang, Y., Zhang, L., et al.: Jahn-Teller distortions in molybdenum oxides: an achievement in exploring high rate supercapacitor applications and robust photocatalytic potential. Nano Energy 53, 982–992 (2018). https://doi.org/10.1016/j.nanoen.2018.09.028

    Article  CAS  Google Scholar 

  217. Kirubasankar, B., Murugadoss, V., Lin, J., et al.: In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018)

    Article  CAS  PubMed  Google Scholar 

  218. Han, J., Zhang, L.L., Lee, S., et al.: Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 7, 19–26 (2013). https://doi.org/10.1021/nn3034309

    Article  CAS  PubMed  Google Scholar 

  219. Wei, L., Lozano, K., Yuanbing, M.: Microwave popped Co (II)-graphene oxide hybrid : bifunctional catalyst for hydrogen evolution reaction and hydrogen storage. Eng. Sci. 3, 62–66 (2018). https://doi.org/10.30919/es8d723

    Article  Google Scholar 

  220. Deng, W., Kang, T., Liu, H., et al.: Potassium hydroxide activated and nitrogen doped graphene with enhanced supercapacitive behavior. Sci. Adv. Mater. 10, 937–949 (2018)

    Article  CAS  Google Scholar 

  221. Idrees, M., Batool, S., Kong, J., et al.: Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925–937 (2019)

    Article  CAS  Google Scholar 

  222. Sun, L., Zhang, Y., Zhang, D., et al.: Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale 9, 18552–18560 (2017). https://doi.org/10.1039/C7NR06476D

    Article  CAS  PubMed  Google Scholar 

  223. Lin, C., Hu, L., Cheng, C., et al.: Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018). https://doi.org/10.1016/j.electacta.2017.11.051

    Article  CAS  Google Scholar 

  224. Shen, S., Guo, W., Xie, D., et al.: A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays. J. Mater. Chem. A 6, 20195–20204 (2018). https://doi.org/10.1039/c8ta06858e

    Article  CAS  Google Scholar 

  225. Yao, Z., Xia, X., Zhang, Y., et al.: Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy 54, 304–312 (2018). https://doi.org/10.1016/j.nanoen.2018.10.024

    Article  CAS  Google Scholar 

  226. Ohtani, B.: Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem. Lett. 37, 216–229 (2008). https://doi.org/10.1246/cl.2008.216

    Article  CAS  Google Scholar 

  227. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  228. Burnside, S.D., Shklover, V., Barbé, C., et al.: Self-organization of TiO2 nanoparticles in thin films. Chem. Mater. 10, 2419–2425 (1998). https://doi.org/10.1021/cm980702b

    Article  CAS  Google Scholar 

  229. Earle, M.D.: The electrical conductivity of titanium dioxide. Phys. Rev. 61, 56–62 (1942)

    Article  CAS  Google Scholar 

  230. Asahi, R., Morikawa, T., Ohwaki, T., et al.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  CAS  PubMed  Google Scholar 

  231. Gupta, S.M., Tripathi, M.: A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639 (2011). https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  232. Zeng, C., Hu, Y., Guo, Y., et al.: Achieving tunable photocatalytic activity enhancement by elaborately engineering composition-adjustable polynary heterojunctions photocatalysts. Appl. Catal. B-Environ. 194, 62–73 (2016). https://doi.org/10.1016/j.apcatb.2016.04.036

    Article  CAS  Google Scholar 

  233. Huang, C., Li, C., Shi, G.: Graphene based catalysts. Energy Environ. Sci. 5, 8848–8868 (2012). https://doi.org/10.1039/C2EE22238H

    Article  CAS  Google Scholar 

  234. He, Y., Zhang, Y., Huang, H., et al.: Synthesis of titanium dioxide–reduced graphite oxide nanocomposites and their photocatalytic performance. Micro Nano Lett. 8, 483–486 (2013)

    Article  CAS  Google Scholar 

  235. Zhang, Q., An, Q., Luan, X., et al.: Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride). Nanoscale 7, 14002–14009 (2015). https://doi.org/10.1039/C5NR03256C

    Article  CAS  PubMed  Google Scholar 

  236. Wang, S., Zhang, Y., Zhang, T., et al.: Readily attainable spongy foam photocatalyst for promising practical photocatalysis. Appl. Catal. B-Environ. 208, 75–81 (2017). https://doi.org/10.1016/j.apcatb.2017.02.033

    Article  CAS  Google Scholar 

  237. Guo, Y., Zhang, Y., Tian, N., et al.: Homogeneous {001}-BiOBr/Bi heterojunctions: facile controllable synthesis and morphology-dependent photocatalytic activity. ACS Sustain. Chem. Eng. 4, 4003–4012 (2016). https://doi.org/10.1021/acssuschemeng.6b00884

    Article  CAS  Google Scholar 

  238. Huang, H., He, Y., Du, X., et al.: A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain. Chem. Eng. 3, 3262–3273 (2015). https://doi.org/10.1021/acssuschemeng.5b01038

    Article  CAS  Google Scholar 

  239. Huang, H., Han, X., Li, X., et al.: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482–492 (2015). https://doi.org/10.1021/am5065409

    Article  CAS  PubMed  Google Scholar 

  240. Huang, H., Liu, K., Zhang, Y., et al.: Tunable 3D hierarchical graphene–BiOI nanoarchitectures: their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv. 4, 49386–49394 (2014). https://doi.org/10.1039/c4ra07533a

    Article  CAS  Google Scholar 

  241. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 48, 1914–1920 (1977). https://doi.org/10.1063/1.323948

    Article  CAS  Google Scholar 

  242. Zhang, Y., Shen, B., Huang, H., et al.: BiPO4/reduced graphene oxide composites photocatalyst with high photocatalytic activity. Appl. Surf. Sci. 319, 272–277 (2014). https://doi.org/10.1016/j.apsusc.2014.07.052

    Article  CAS  Google Scholar 

  243. Du, R., Zhang, Y., Li, B., et al.: Biomolecule-assisted synthesis of defect-mediated Cd1-xZnxS/MoS2/graphene hollow spheres for highly efficient hydrogen evolution. Phys. Chem. Chem. Phys. 18, 16208–16215 (2016). https://doi.org/10.1039/c6cp01322h

    Article  CAS  PubMed  Google Scholar 

  244. Tian, N., Zhang, Y., Li, X., et al.: Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038

    Article  CAS  Google Scholar 

  245. Liu, C., Huang, H., Ye, L., et al.: Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. Nano Energy 41, 738–748 (2017). https://doi.org/10.1016/j.nanoen.2017.10.031

    Article  CAS  Google Scholar 

  246. Sheng, Z.H., Zheng, X.Q., Xu, J.Y., et al.: Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34, 125–131 (2012). https://doi.org/10.1016/j.bios.2012.01.030

    Article  CAS  PubMed  Google Scholar 

  247. Qu, L., Liu, Y., Baek, J.B., et al.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010). https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  248. Ravula, S., Zhang, C., Essner, J.B., et al.: Ionic liquid-assisted synthesis of nanoscale (MoS2)x(SnO2)1-x on reduced graphene oxide for the electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 8065–8074 (2017). https://doi.org/10.1021/acsami.6b13578

    Article  CAS  PubMed  Google Scholar 

  249. Sahoo, M., Ramaprabhu, S.: One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627–635 (2018). https://doi.org/10.1016/j.carbon.2017.11.056

    Article  CAS  Google Scholar 

  250. Jaramillo, T.F., Jørgensen, K.P., Bonde, J., et al.: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)

    Article  CAS  PubMed  Google Scholar 

  251. Ang, P.K., Chen, W., Wee, A.T.S., et al.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008). https://doi.org/10.1021/ja805090z

    Article  CAS  PubMed  Google Scholar 

  252. Dong, X.C., Xu, H., Wang, X.W., et al.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012). https://doi.org/10.1021/nn300097q

    Article  CAS  PubMed  Google Scholar 

  253. Wu, S., He, Q., Tan, C., et al.: Graphene-based electrochemical sensors. Small 9, 1160–1172 (2013). https://doi.org/10.1002/smll.201202896

    Article  CAS  PubMed  Google Scholar 

  254. Li, Y., Zhang, Y., Li, F., et al.: Sandwich-type amperometric immunosensor using functionalized magnetic graphene loaded gold and silver core-shell nanocomposites for the detection of Carcinoembryonic antigen. J. Electroanal. Chem. 795, 1–9 (2017). https://doi.org/10.1016/j.jelechem.2017.04.042

    Article  CAS  Google Scholar 

  255. Li, Y., Zhang, Y., Jiang, L., et al.: A sandwich-type electrochemical immunosensor based on the biotin-streptavidin-biotin structure for detection of human immunoglobulin G. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep22694

    Article  CAS  Google Scholar 

  256. Kuila, T., Bose, S., Khanra, P., et al.: Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011). https://doi.org/10.1016/j.bios.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  257. Liao, S., Zong, X., Seger, B., et al.: Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms11474

    Article  CAS  Google Scholar 

  258. Du, Y., Feng, Y., Qu, Y., et al.: Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell. Environ. Sci. Technol. 48, 7634–7641 (2014). https://doi.org/10.1021/es5011994

    Article  CAS  PubMed  Google Scholar 

  259. Antoniadou, M., Lianos, P.: Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell. Appl. Catal. B-Environ. 99, 307–313 (2010). https://doi.org/10.1016/j.apcatb.2010.06.037

    Article  CAS  Google Scholar 

  260. Sakata, T., Kawai, T.: Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem. Phys. Lett. 80, 341–344 (1981). https://doi.org/10.1016/0009-2614(81)80121-2

    Article  CAS  Google Scholar 

  261. Lianos, P.: Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: a review of a re-emerging research field. J. Hazard Mater. 185, 575–590 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.083

    Article  CAS  PubMed  Google Scholar 

  262. Li, X., Wang, G., Jing, L., et al.: A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode. Chem. Commun. 52, 2533–2536 (2016)

    Article  CAS  Google Scholar 

  263. Zhang, M., Cheng, J., Xuan, X., et al.: CO2 synergistic reduction in a photoanode-driven photoelectrochemical cell with a Pt-modified TiO2 nanotube photoanode and a Pt reduced graphene oxide electrocathode. ACS Sustain. Chem. Eng. 4, 6344–6354 (2016). https://doi.org/10.1021/acssuschemeng.6b00909

    Article  CAS  Google Scholar 

  264. Zhang, M., Cheng, J., Xuan, X., et al.: Pt/graphene aerogel deposited in Cu foam as a 3D binder-free cathode for CO2 reduction into liquid chemicals in a TiO2 photoanode-driven photoelectrochemical cell. Chem. Eng. J. 322, 22–32 (2017). https://doi.org/10.1016/j.cej.2017.03.126

    Article  CAS  Google Scholar 

  265. Cohn, A.P., Erwin, W.R., Share, K., et al.: All Silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 15, 2727–2731 (2015). https://doi.org/10.1021/acs.nanolett.5b00563

    Article  CAS  PubMed  Google Scholar 

  266. Li, N., Wang, Y., Tang, D., et al.: Integrating a photocatalyst into a hybrid lithium-sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54, 9271–9274 (2015). https://doi.org/10.1002/anie.201503425

    Article  CAS  Google Scholar 

  267. Liu, Y., Yi, J., Qiao, Y., et al.: Solar-driven efficient Li2O2 oxidation in solid-state Li-ion O2 batteries. Energy Storage Mater. 11, 170–175 (2018). https://doi.org/10.1016/j.ensm.2017.10.002

    Article  Google Scholar 

  268. Qiao, Y., Liu, Y., Jiang, K., et al.: Boosting the cycle life of aprotic Li-O2 batteries via a photo-assisted hybrid Li2O2-scavenging strategy. Small Methods 2, 1700284 (2018)

    Article  CAS  Google Scholar 

  269. Dong, K., Wang, Y.C., Deng, J., et al.: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11, 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317

    Article  CAS  PubMed  Google Scholar 

  270. Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a

    Article  CAS  PubMed  Google Scholar 

  271. Wang, Z.L.: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001

    Article  Google Scholar 

  272. Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035

    Article  CAS  Google Scholar 

  273. Salomon, S., Eymery, J., Pauliac-Vaujour, E.: GaN wire-based Langmuir–Blodgett films for self-powered flexible strain sensors. Nanotechnology 25, 375502 (2014)

    Article  CAS  PubMed  Google Scholar 

  274. Jamond, N., Chrétien, P., Houzé, F., et al.: Piezo-generator integrating a vertical array of GaN nanowires. Nanotechnology 27, 325403 (2016)

    Article  CAS  PubMed  Google Scholar 

  275. Kwon, J., Seung, W., Sharma, B.K., et al.: A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5, 8970–8975 (2012)

    Article  CAS  Google Scholar 

  276. Lin, Z.H., Yang, Y., Wu, J.M., et al.: BaTiO3 nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. 3, 3599–3604 (2012). https://doi.org/10.1021/jz301805f

    Article  CAS  PubMed  Google Scholar 

  277. Cauda, V., Stassi, S., Bejtka, K., et al.: Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces 5, 6430–6437 (2013). https://doi.org/10.1021/am4016878

    Article  CAS  PubMed  Google Scholar 

  278. Wang, D.H., Huang, S.L.: Health monitoring and diagnosis for flexible structures with PVDF piezoelectric film sensor array. J. Intell. Mater. Syst. Struct. 11, 482–491 (2000)

    Article  Google Scholar 

  279. Tong, W., Zhang, Y., Zhang, Q., et al.: An all-solid-state flexible piezoelectric high-k film functioning as both a generator and in situ storage unit. Adv. Funct. Mater. 25, 7029–7037 (2015). https://doi.org/10.1002/adfm.201503514

    Article  CAS  Google Scholar 

  280. Rau, H., Lueddecke, E.: On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J. Am. Chem. Soc. 104, 1616–1620 (1982)

    Article  CAS  Google Scholar 

  281. Crecca, C.R., Roitberg, A.E.: Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives. J. Phys. Chem. A 110, 8188–8203 (2006). https://doi.org/10.1021/jp057413c

    Article  CAS  PubMed  Google Scholar 

  282. Ikeda, T., Tsutsumi, O.: Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995)

    Article  CAS  PubMed  Google Scholar 

  283. Zakrevskyy, Y., Richter, M., Zakrevska, S., et al.: Light-controlled reversible manipulation of microgel particle size using azobenzene-containing surfactant. Adv. Funct. Mater. 22, 5000–5009 (2012). https://doi.org/10.1002/adfm.201200617

    Article  CAS  Google Scholar 

  284. Kunitake, T., Nakashima, N., Shimomura, M., et al.: Unique properties of chromophore-containing bilayer aggregates: enhanced chirality and photochemically induced morphological change. J. Am. Chem. Soc. 102, 6642–6644 (1980). https://doi.org/10.1021/ja00541a081

    Article  CAS  Google Scholar 

  285. Yu, H., Kobayashi, T., Hu, G.H.: Photocontrolled microphase separation in a nematic liquid–crystalline diblock copolymer. Polymer 52, 1554–1561 (2011). https://doi.org/10.1016/j.polymer.2011.01.053

    Article  CAS  Google Scholar 

  286. Yu, L., Cheng, Z., Dong, Z., et al.: Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J. Mater. Chem. C 2, 8501–8506 (2014). https://doi.org/10.1039/c4tc01097c

    Article  CAS  Google Scholar 

  287. Yu, H., Dong, C., Zhou, W., Kobayashi, T., Yang, H.: Wrinkled liquid-crystalline microparticle-enhanced photoresponse of PDLC-like films by coupling with mechanical stretching. Small 7, 3039–3045 (2011). https://doi.org/10.1002/smll.201101098

    Article  CAS  PubMed  Google Scholar 

  288. Cheng, Z., Wang, T., Li, X., et al.: NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 7, 27494–27501 (2015). https://doi.org/10.1021/acsami.5b09676

    Article  CAS  PubMed  Google Scholar 

  289. Cheng, Z., Ma, S., Zhang, Y., et al.: Photomechanical motion of liquid-crystalline fibers bending away from a light source. Macromolecules 50, 8317–8324 (2017). https://doi.org/10.1021/acs.macromol.7b01741

    Article  CAS  Google Scholar 

  290. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  291. Li, X., Zhang, Y., Wu, Y., et al.: Combined photothermal and surface-enhanced raman spectroscopy effect from spiky noble metal nanoparticles wrapped within graphene-polymer layers: using layer-by-layer modified reduced graphene oxide as reactive precursors. ACS Appl. Mater. Interfaces 7, 19353–19361 (2015). https://doi.org/10.1021/acsami.5b05463

    Article  CAS  PubMed  Google Scholar 

  292. Zhu, G., Li, Q., Che, R.: Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries. Chem. Eur. J. 24, 12932–12937 (2018). https://doi.org/10.1002/chem.201801728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51772279 and 51572246) and the Fundamental Research Funds for the Central Universities (Nos. 2652015425 and 2652017401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihe Zhang, Li Sun or Hongwei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Zhang, Y., Tong, W. et al. Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochem. Energ. Rev. 3, 395–430 (2020). https://doi.org/10.1007/s41918-019-00042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00042-6

Keywords

Navigation