Advertisement

Economics of Disasters and Climate Change

, Volume 3, Issue 3, pp 191–211 | Cite as

Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe

  • Anton OrlovEmail author
  • Jana Sillmann
  • Asbjørn Aaheim
  • Kristin Aunan
  • Karianne de Bruin
Original Paper

Abstract

European countries have experienced strong heat waves over the last two decades. The frequency and magnitude of such extreme weather events are expected to increase in the near future. Using an interdisciplinary approach, which combines meteorological, epidemiological and economic analyses, we assess the cost of heat-induced reductions in outdoor worker productivity in Europe caused by the heat waves in August of 2003, July of 2010, and July of 2015. We found that for the top ten most affected European countries, average direct economic losses in agriculture accounted for $59–90 per worker and for construction, it was $41–72 per worker. Direct economic losses were especially high in countries, such as Cyprus, Italy, and Spain. Social costs of heat-induced reductions in worker productivity in agriculture and construction account for an average of $2–3 per capita.

Keywords

Heat waves Worker productivity Economic losses Europe 

JEL Classification

Q54 C68 D24 

Notes

Acknowledgements

This work was funded by The Research Council of Norway through project number 243953 “Physical and Statistical Analysis of Climate Extremes in Large Datasets” (ClimateXL). Also, the authors thank Christian Wilhelm Mohr for technical assistance and valuable comments.

Supplementary material

41885_2019_44_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 30.1 kb)

References

  1. Aaheim HA, Orlov A, Wei T, Glomsrød S (2018) GRACE model and applications, CICERO Report 2018:01Google Scholar
  2. Angel A, Narayanan B, McDougall R (2016) GTAP data bases: GTAP 9 Data Base documentation [WWW document]. URL https://www.gtap.agecon.purdue.edu/databases/v9/v9_doco.asp. Accessed 14 Dec 2017
  3. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224.  https://doi.org/10.1126/science.1201224 CrossRefGoogle Scholar
  4. Bernard TE, Pourmoghani M (1999) Prediction of workplace wet bulb global temperature. Appl Occup Environ Hyg 14:126–134.  https://doi.org/10.1080/104732299303296 CrossRefGoogle Scholar
  5. Bodin T, García-Trabanino R, Weiss I, Jarquín E, Glaser J, Jakobsson K, Lucas R a I, Wesseling C, Hogstedt C, Wegman DH (2016) Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: phase 1. Occup Environ Med 73:409–416.  https://doi.org/10.1136/oemed-2016-103555 CrossRefGoogle Scholar
  6. Bröde P, Fiala D, Lemke B, Kjellstrom T (2018) Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. Int J Biometeorol 62:331–345.  https://doi.org/10.1007/s00484-017-1346-9 CrossRefGoogle Scholar
  7. Casanueva A (2019) HeatStress: Calculate heat stress indices. R package version 1.0.6Google Scholar
  8. CIESIN (Center for International Earth Science Information Network - CIESIN - Columbia University) (2017) Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 10Google Scholar
  9. Dell M, Jones BF, Olken BA (2014) What do we learn from the weather? The new climate-economy literature. J Econ Lit 52:740–798.  https://doi.org/10.1257/jel.52.3.740 CrossRefGoogle Scholar
  10. Dunne JP, Stouffer RJ, John JG (2013) Reductions in labour capacity from heat stress under climate warming. Nat Clim Chang 3:563–566.  https://doi.org/10.1038/nclimate1827 CrossRefGoogle Scholar
  11. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24.  https://doi.org/10.1007/s00420-006-0089-4 CrossRefGoogle Scholar
  12. Hijmans RJ (2017) Raster: geographic data analysis and modeling. R package version 2.6-7Google Scholar
  13. IPCC (2014) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  14. Jacklitsch B, Williams W, Musolin K, Coca A, Kim J-H, Turner N (2016) CDC - occupational exposure to heat and hot environments - NIOSH Publications & Products [WWW document]. URL https://www.cdc.gov/niosh/docs/2016-106/. Accessed 17 Apr 2018
  15. Kjellstrom T, Sari Kovats R, Lloyd SJ, Holt T, Tol RSJ (2009) The direct impact of climate change on regional labor productivity. Arch Environ Occup Health 64:217–227.  https://doi.org/10.1080/19338240903352776 CrossRefGoogle Scholar
  16. Kjellstrom T, Freyberg C, Lemke B, Otto M, Briggs D (2018) Estimating population heat exposure and impacts on working people in conjunction with climate change. Int J Biometeorol 62:291–306.  https://doi.org/10.1007/s00484-017-1407-0 CrossRefGoogle Scholar
  17. Krishnamurthy M, Ramalingam P, Perumal K, Kamalakannan LP, Chinnadurai J, Shanmugam R, Srinivasan K, Venugopal V (2017) Occupational heat stress impacts on health and productivity in a steel industry in Southern India. Saf Health Work 8:99–104.  https://doi.org/10.1016/j.shaw.2016.08.005 CrossRefGoogle Scholar
  18. Lemke B, Kjellstrom T (2012) Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Ind Health 50:267–278CrossRefGoogle Scholar
  19. Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R (2008) Modeling the wet bulb globe temperature using standard meteorological measurements. J Occup Environ Hyg 5:645–655.  https://doi.org/10.1080/15459620802310770 CrossRefGoogle Scholar
  20. Lofgren H, Lee Harris R, Robinson S (2002) A standard computable general equilibrium (CGE) model in GAMS | IFPRI [WWW Document]. URL http://www.ifpri.org/publication/standard-computable-general-equilibrium-cge-model-gams-0. Accessed 2 Nov 2018
  21. Lofland JH, Pizzi L, Frick KD (2004) A review of health-related workplace productivity loss instruments. PharmacoEconomics 22:165–184CrossRefGoogle Scholar
  22. Martínez-Solanas È, López-Ruiz M, Wellenius GA, Gasparrini A, Sunyer J, Benavides FG, Basagaña X (2018) Evaluation of the impact of ambient temperatures on occupational injuries in Spain. Environ Health Perspect 126.  https://doi.org/10.1289/EHP2590
  23. Merte S (2017) Estimating heat wave-related mortality in Europe using singular spectrum analysis. Clim Chang 142:321–330.  https://doi.org/10.1007/s10584-017-1937-9 CrossRefGoogle Scholar
  24. Mitchell D, Heaviside C, Schaller N, Allen M, Ebi KL, Fischer EM, Gasparrini A, Harrington L, Kharin V, Shiogama H, Sillmann J, Sippel S, Vardoulakis S (2018) Extreme heat-related mortality avoided under Paris agreement goals. Nat Clim Chang 1.  https://doi.org/10.1038/s41558-018-0210-1
  25. Niemelä R, Hannula M, Rautio S, Reijula K, Railio J (2002) The effect of air temperature on labour productivity in call centres—a case study. Energy Build, REHVA Scientific 34:759–764.  https://doi.org/10.1016/S0378-7788(02)00094-4 CrossRefGoogle Scholar
  26. OECD (2016) The economic consequences of outdoor air pollution - en - OECD [WWW Document]. URL http://www.oecd.org/environment/indicators-modelling-outlooks/the-economic-consequences-of-outdoor-air-pollution-9789264257474-en.htm. Accessed 26 Oct 2018
  27. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310.  https://doi.org/10.1038/nature04188 CrossRefGoogle Scholar
  28. Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol, Dossier : Nouveautés en cancérogenèse / New developments in carcinogenesis 331:171–178.  https://doi.org/10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  29. Roson R, Sartori M (2016) Estimation of climate change damage functions for 140 regions in the GTAP 9 Data Base. J Glob Econ Anal 1:78–115.  https://doi.org/10.21642/JGEA.010202AF CrossRefGoogle Scholar
  30. Rowlinson S, Jia YA (2015) Construction accident causality: an institutional analysis of heat illness incidents on site. Saf Sci 78:179–189.  https://doi.org/10.1016/j.ssci.2015.04.021 CrossRefGoogle Scholar
  31. Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ Res Lett 10:124003.  https://doi.org/10.1088/1748-9326/10/12/124003 CrossRefGoogle Scholar
  32. Russo S, Sillmann J, Sippel S, Barcikowska MJ, Ghisetti C, Smid M, O’Neill B (2019) Half a degree and rapid socioeconomic development matter for heatwave risk. Nat Commun 10(136).  https://doi.org/10.1038/s41467-018-08070-4
  33. Sahu S, Sett M, Kjellstrom T (2013) Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future. Ind Health 51:424–431CrossRefGoogle Scholar
  34. Schmitt LHM, Graham HM, White PCL (2016) Economic evaluations of the health impacts of weather-related extreme events: a scoping review. Int J Environ Res Public Health 13.  https://doi.org/10.3390/ijerph13111105
  35. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733.  https://doi.org/10.1002/jgrd.50203 CrossRefGoogle Scholar
  36. Takakura J, Fujimori S, Takahashi K, Hijioka Y, Hasegawa T, Honda Y, Masui T (2017) Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environ Res Lett 12:064010.  https://doi.org/10.1088/1748-9326/aa72cc CrossRefGoogle Scholar
  37. Takakura J, Fujimori S, Takahashi K, Hasegawa T, Honda Y, Hanasaki N, Hijioka Y, Masui T (2018) Limited role of working time shift in offsetting the increasing occupational-health cost of heat exposure. Earths Future 6:1588–1602.  https://doi.org/10.1029/2018EF000883 CrossRefGoogle Scholar
  38. Tawatsupa B, Yiengprugsawan V, Kjellstrom T, Seubsman S, Sleigh A, the Thai Cohort Study Team (2012) Heat stress, health and well-being: findings from a large national cohort of Thai adults. BMJ Open 2:e001396.  https://doi.org/10.1136/bmjopen-2012-001396 CrossRefGoogle Scholar
  39. Venugopal V, Chinnadurai JS, Lucas RAI, Kjellstrom T (2016) Occupational heat stress profiles in selected workplaces in India. Int J Environ Res Public Health 13.  https://doi.org/10.3390/ijerph13010089
  40. Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Chaytor S, Colbourn T, Collins M, Cooper A, Cox PM, Depledge J, Drummond P, Ekins P, Galaz V, Grace D, Graham H, Grubb M, Haines A, Hamilton I, Hunter A, Jiang X, Li M, Kelman I, Liang L, Lott M, Lowe R, Luo Y, Mace G, Maslin M, Nilsson M, Oreszczyn T, Pye S, Quinn T, Svensdotter M, Venevsky S, Warner K, Xu B, Yang J, Yin Y, Yu C, Zhang Q, Gong P, Montgomery H, Costello A (2015) Health and climate change: policy responses to protect public health. Lancet 386:1861–1914.  https://doi.org/10.1016/S0140-6736(15)60854-6 CrossRefGoogle Scholar
  41. World Bank (2018) World Development Indicators | DataBank [WWW Document]. URL http://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GDP.PCAP.CD&country=POL,GRC,PRT,DEU,EUU. Accessed 21 Nov 2018
  42. Wyndham CH (1969) Adaptation to heat and cold. Environ Res 2:442–469CrossRefGoogle Scholar
  43. Xia Y, Li Y, Guan D, Tinoco DM, Xia J, Yan Z, Yang J, Liu Q, Huo H (2018) Assessment of the economic impacts of heat waves: a case study of Nanjing, China. J Clean Prod 171:811–819.  https://doi.org/10.1016/j.jclepro.2017.10.069 CrossRefGoogle Scholar
  44. Xiang J, Bi P, Pisaniello D, Hansen A, Sullivan T (2014) Association between high temperature and work-related injuries in Adelaide, South Australia, 2001-2010. Occup Environ Med 71:246–252.  https://doi.org/10.1136/oemed-2013-101584 CrossRefGoogle Scholar
  45. Yi W, Chan APC (2017) Effects of heat stress on construction labor productivity in Hong Kong: a case study of rebar workers. Int J Environ Res Public Health 14.  https://doi.org/10.3390/ijerph14091055
  46. Zander KK, Botzen WJW, Oppermann E, Kjellstrom T, Garnett ST (2015) Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang 5:647–651.  https://doi.org/10.1038/nclimate2623 CrossRefGoogle Scholar
  47. Zander KK, Cadag JR, Escarcha J, Garnett ST (2018) Perceived heat stress increases with population density in urban Philippines. Environ Res Lett 13:084009.  https://doi.org/10.1088/1748-9326/aad2e5 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anton Orlov
    • 1
    Email author
  • Jana Sillmann
    • 1
  • Asbjørn Aaheim
    • 1
  • Kristin Aunan
    • 1
  • Karianne de Bruin
    • 2
  1. 1.Center for International Climate Research (CICERO)OsloNorway
  2. 2.Wageningen Environmental ResearchWageningenNetherlands

Personalised recommendations